Search results
Results from the WOW.Com Content Network
The magnitude of the energy of cosmic ray flux in interstellar space is very comparable to that of other deep space energies: cosmic ray energy density averages about one electron-volt per cubic centimetre of interstellar space, or ≈1 eV/cm 3, which is comparable to the energy density of visible starlight at 0.3 eV/cm 3, the galactic magnetic ...
Coherent mechanisms can produce much larger brightness temperatures (intensities) and are primarily responsible for the intense spikes of radiation called solar radio bursts, which are byproducts of the same processes that lead to other forms of solar activity like solar flares and coronal mass ejections.
[clarification needed] The international symbol for types and levels of ionizing radiation (radioactivity) that are unsafe for unshielded humans. Radiation, in general, exists throughout nature, such as in light and sound. In physics, radiation is the emission or transmission of energy in the form of waves or particles through space or a ...
As a wave, light is characterized by a velocity (the speed of light), wavelength, and frequency. As particles, light is a stream of photons. Each has an energy related to the frequency of the wave given by Planck's relation E = hf, where E is the energy of the photon, h is the Planck constant, 6.626 × 10 −34 J·s, and f is the frequency of ...
Visible light such as sunlight carries radiant energy, which is used in solar power generation. In physics, and in particular as measured by radiometry, radiant energy is the energy of electromagnetic [1] and gravitational radiation. As energy, its SI unit is the joule (J).
Sound waves may be viewed using parabolic mirrors and objects that produce sound. [9] The energy carried by an oscillating sound wave converts back and forth between the potential energy of the extra compression (in case of longitudinal waves) or lateral displacement strain (in case of transverse waves) of the matter, and the kinetic energy of ...
In an antenna transmitting radio waves, the electrons in the antenna emit the energy in discrete packets called radio photons, while in a receiving antenna the electrons absorb the energy as radio photons. An antenna is a coherent emitter of photons, like a laser, so the radio photons are all in phase.
The photometry units are different from most systems of physical units in that they take into account how the human eye responds to light. The cone cells in the human eye are of three types which respond differently across the visible spectrum and the cumulative response peaks at a wavelength of around 555 nm. Therefore, two sources of light ...