Search results
Results from the WOW.Com Content Network
Simple diagram of transcription elongation. One strand of the DNA, the template strand (or noncoding strand), is used as a template for RNA synthesis. As transcription proceeds, RNA polymerase traverses the template strand and uses base pairing complementarity with the DNA template to create an RNA copy (which elongates during the traversal).
After escaping the promoter and shedding most of the transcription factors for initiation, the polymerase acquires new factors for the next phase of transcription: elongation. [21] [22] Transcription elongation is a processive process. Double stranded DNA that enters from the front of the enzyme is unzipped to avail the template strand for RNA ...
The elongation and membrane targeting stages of eukaryotic translation. The ribosome is green and yellow, the tRNAs are dark-blue, and the other proteins involved are light-blue. Elongation depends on eukaryotic elongation factors. At the end of the initiation step, the mRNA is positioned so that the next codon can be translated during the ...
Overview of eukaryotic messenger RNA (mRNA) translation Translation of mRNA and ribosomal protein synthesis Initiation and elongation stages of translation involving RNA nucleobases, the ribosome, transfer RNA, and amino acids The three phases of translation: (1) in initiation, the small ribosomal subunit binds to the RNA strand and the initiator tRNA–amino acid complex binds to the start ...
The σ-factor dissociates from the core enzyme and elongation proceeds. This signals the end of the initiation phase and the holoenzyme is now in core polymerase form. [4] Abortive cycling occurs prior to sigma factor release. The promoter region is a prime regulator of transcription. Promoter regions regulate transcription of all genes within ...
In addition to processes that regulate transcription at the stage of initiation, mRNA synthesis is also controlled by the rate of transcription elongation. [10] RNA polymerase pauses occur frequently and are regulated by transcription factors, such as NusG and NusA, transcription-translation coupling , and mRNA secondary structure.
Once translation initiation is complete, the first aminoacyl tRNA is located in the P/P site, ready for the elongation cycle described below. During translation elongation, tRNA first binds to the ribosome as part of a complex with elongation factor Tu or its eukaryotic or archaeal counterpart. This initial tRNA binding site is called the A/T site.
Activation of transcription depends on whether or not the transcription elongation complex, itself consisting of a variety of transcription factors, can induce RNA polymerase to dissociate from the Mediator complex that connects an enhancer region to the promoter. [4] Role of transcription factors and enhancers in gene expression regulation