enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Deep belief network - Wikipedia

    en.wikipedia.org/wiki/Deep_belief_network

    In machine learning, a deep belief network (DBN) is a generative graphical model, or alternatively a class of deep neural network, composed of multiple layers of latent variables ("hidden units"), with connections between the layers but not between units within each layer.

  3. Deep learning - Wikipedia

    en.wikipedia.org/wiki/Deep_learning

    Deep learning is a subset of machine learning that focuses on utilizing neural networks to perform tasks such as classification, regression, and representation learning.The field takes inspiration from biological neuroscience and is centered around stacking artificial neurons into layers and "training" them to process data.

  4. Neural network (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Neural_network_(machine...

    A network is typically called a deep neural network if it has at least two hidden layers. [3] Artificial neural networks are used for various tasks, including predictive modeling, adaptive control, and solving problems in artificial intelligence. They can learn from experience, and can derive conclusions from a complex and seemingly unrelated ...

  5. Types of artificial neural networks - Wikipedia

    en.wikipedia.org/wiki/Types_of_artificial_neural...

    A deep belief network (DBN) is a probabilistic, generative model made up of multiple hidden layers. It can be considered a composition of simple learning modules. [43] A DBN can be used to generatively pre-train a deep neural network (DNN) by using the learned DBN weights as the initial DNN weights.

  6. Bayesian network - Wikipedia

    en.wikipedia.org/wiki/Bayesian_network

    A Bayesian network (also known as a Bayes network, Bayes net, belief network, or decision network) is a probabilistic graphical model that represents a set of variables and their conditional dependencies via a directed acyclic graph (DAG). [1] While it is one of several forms of causal notation, causal networks are special cases of Bayesian ...

  7. Recurrent neural network - Wikipedia

    en.wikipedia.org/wiki/Recurrent_neural_network

    Fully recurrent neural networks (FRNN) connect the outputs of all neurons to the inputs of all neurons. In other words, it is a fully connected network. This is the most general neural network topology, because all other topologies can be represented by setting some connection weights to zero to simulate the lack of connections between those ...

  8. Neural network - Wikipedia

    en.wikipedia.org/wiki/Neural_network

    A network is trained by modifying these weights through empirical risk minimization or backpropagation in order to fit some preexisting dataset. [5] The term deep neural network refers to neural networks that have more than three layers, typically including at least two hidden layers in addition to the input and output layers.

  9. CIFAR-10 - Wikipedia

    en.wikipedia.org/wiki/CIFAR-10

    Convolutional Deep Belief Networks on CIFAR-10 [6] 21.1 August, 2010 Maxout Networks [7] 9.38: February 13, 2013: Wide Residual Networks [8] 4.0: May 23, 2016: Neural Architecture Search with Reinforcement Learning [9] 3.65: November 4, 2016: Fractional Max-Pooling [10] 3.47: December 18, 2014: Densely Connected Convolutional Networks [11] 3.46 ...