enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Deep belief network - Wikipedia

    en.wikipedia.org/wiki/Deep_belief_network

    In machine learning, a deep belief network (DBN) is a generative graphical model, or alternatively a class of deep neural network, composed of multiple layers of latent variables ("hidden units"), with connections between the layers but not between units within each layer. [1]

  3. Types of artificial neural networks - Wikipedia

    en.wikipedia.org/wiki/Types_of_artificial_neural...

    A deep belief network (DBN) is a probabilistic, generative model made up of multiple hidden layers. It can be considered a composition of simple learning modules. [43] A DBN can be used to generatively pre-train a deep neural network (DNN) by using the learned DBN weights as the initial DNN weights.

  4. Deep learning - Wikipedia

    en.wikipedia.org/wiki/Deep_learning

    Deep learning is a subset of machine learning that focuses on utilizing neural networks to perform tasks such as classification, regression, and representation learning.The field takes inspiration from biological neuroscience and is centered around stacking artificial neurons into layers and "training" them to process data.

  5. Neural network (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Neural_network_(machine...

    A network is typically called a deep neural network if it has at least two hidden layers. [3] Artificial neural networks are used for various tasks, including predictive modeling, adaptive control, and solving problems in artificial intelligence. They can learn from experience, and can derive conclusions from a complex and seemingly unrelated ...

  6. Convolutional deep belief network - Wikipedia

    en.wikipedia.org/wiki/Convolutional_deep_belief...

    Training of the network involves a pre-training stage accomplished in a greedy layer-wise manner, similar to other deep belief networks. Depending on whether the network is to be used for discrimination or generative tasks, it is then "fine tuned" or trained with either back-propagation or the up–down algorithm (contrastive–divergence ...

  7. Bayesian network - Wikipedia

    en.wikipedia.org/wiki/Bayesian_network

    A Bayesian network (also known as a Bayes network, Bayes net, belief network, or decision network) is a probabilistic graphical model that represents a set of variables and their conditional dependencies via a directed acyclic graph (DAG). [1] While it is one of several forms of causal notation, causal networks are special cases of Bayesian ...

  8. Convolutional neural network - Wikipedia

    en.wikipedia.org/wiki/Convolutional_neural_network

    Convolutional deep belief networks (CDBN) have structure very similar to convolutional neural networks and are trained similarly to deep belief networks. Therefore, they exploit the 2D structure of images, like CNNs do, and make use of pre-training like deep belief networks. They provide a generic structure that can be used in many image and ...

  9. Neural network - Wikipedia

    en.wikipedia.org/wiki/Neural_network

    A network is trained by modifying these weights through empirical risk minimization or backpropagation in order to fit some preexisting dataset. [5] The term deep neural network refers to neural networks that have more than three layers, typically including at least two hidden layers in addition to the input and output layers.