enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Imaginary unit - Wikipedia

    en.wikipedia.org/wiki/Imaginary_unit

    The imaginary unit or unit imaginary number ( i) is a solution to the quadratic equation x2 + 1 = 0. Although there is no real number with this property, i can be used to extend the real numbers to what are called complex numbers, using addition and multiplication. A simple example of the use of i in a complex number is 2 + 3i.

  3. Imaginary number - Wikipedia

    en.wikipedia.org/wiki/Imaginary_number

    An imaginary number is the product of a real number and the imaginary unit i, [note 1] which is defined by its property i2 = −1. [1][2] The square of an imaginary number bi is −b2. For example, 5i is an imaginary number, and its square is −25. The number zero is considered to be both real and imaginary. [3]

  4. Quadratic formula - Wikipedia

    en.wikipedia.org/wiki/Quadratic_formula

    Quadratic formula. The roots of the quadratic function y = ⁠ 1 2 ⁠x2 − 3x + ⁠ 5 2 ⁠ are the places where the graph intersects the x -axis, the values x = 1 and x = 5. They can be found via the quadratic formula. In elementary algebra, the quadratic formula is a closed-form expression describing the solutions of a quadratic equation.

  5. −1 - Wikipedia

    en.wikipedia.org/wiki/%E2%88%921

    S&M: 0x101 16. 2sC: 0xFF 16. In mathematics, −1 ( negative one or minus one) is the additive inverse of 1, that is, the number that when added to 1 gives the additive identity element, 0. It is the negative integer greater than negative two (−2) and less than 0 .

  6. Difference of two squares - Wikipedia

    en.wikipedia.org/wiki/Difference_of_two_squares

    The difference of two squares is used to find the linear factors of the sum of two squares, using complex number coefficients. For example, the complex roots of can be found using difference of two squares: (since ) Therefore, the linear factors are and . Since the two factors found by this method are complex conjugates, we can use this in ...

  7. Quadratic equation - Wikipedia

    en.wikipedia.org/wiki/Quadratic_equation

    For example, let a denote a multiplicative generator of the group of units of F 4, the Galois field of order four (thus a and a + 1 are roots of x 2 + x + 1 over F 4. Because (a + 1) 2 = a, a + 1 is the unique solution of the quadratic equation x 2 + a = 0. On the other hand, the polynomial x 2 + ax + 1 is irreducible over F 4, but it splits ...

  8. Square (algebra) - Wikipedia

    en.wikipedia.org/wiki/Square_(algebra)

    Square (algebra) 5⋅5, or 52 (5 squared), can be shown graphically using a square. Each block represents one unit, 11, and the entire square represents 5⋅5, or the area of the square. In mathematics, a square is the result of multiplying a number by itself. The verb "to square" is used to denote this operation.

  9. Proofs of trigonometric identities - Wikipedia

    en.wikipedia.org/wiki/Proofs_of_trigonometric...

    Pythagorean identities. Identity 1: The following two results follow from this and the ratio identities. To obtain the first, divide both sides of by ; for the second, divide by . Similarly. Identity 2: The following accounts for all three reciprocal functions. Proof 2: Refer to the triangle diagram above.