Search results
Results from the WOW.Com Content Network
The curl of the gradient of any scalar field φ is always the zero vector field = which follows from the antisymmetry in the definition of the curl, and the symmetry of second derivatives. The divergence of the curl of any vector field is equal to zero: ∇ ⋅ ( ∇ × F ) = 0. {\displaystyle \nabla \cdot (\nabla \times \mathbf {F} )=0.}
C: curl, G: gradient, L: Laplacian, CC: curl of curl. Each arrow is labeled with the result of an identity, specifically, the result of applying the operator at the arrow's tail to the operator at its head. The blue circle in the middle means curl of curl exists, whereas the other two red circles (dashed) mean that DD and GG do not exist.
Curl, (with operator symbol ) is a vector operator that measures a vector field's curling (winding around, rotating around) trend about a given point. As an extension of vector calculus operators to physics, engineering and tensor spaces, grad, div and curl operators also are often associated with tensor calculus as well as vector calculus.
The line integral of a vector field over a loop is equal to the surface integral of its curl over the enclosed surface. Stokes' theorem is a special case of the generalized Stokes theorem. [5] [6] In particular, a vector field on can be considered as a 1-form in which case its curl is its exterior derivative, a 2-form.
This holds as a consequence of the definition of a line integral, the chain rule, and the second fundamental theorem of calculus. v ⋅ d r = ∇ φ ⋅ d r {\displaystyle \mathbf {v} \cdot d\mathbf {r} =\nabla {\varphi }\cdot d\mathbf {r} } in the line integral is an exact differential for an orthogonal coordinate system (e.g., Cartesian ...
Vector calculus or vector analysis is a branch of mathematics concerned with the differentiation and integration of vector fields, primarily in three-dimensional Euclidean space, . [1] The term vector calculus is sometimes used as a synonym for the broader subject of multivariable calculus, which spans vector calculus as well as partial differentiation and multiple integration.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Since this definition is coordinate-free, it shows that the divergence is the same in any coordinate system. However the above definition is not often used practically to calculate divergence; when the vector field is given in a coordinate system the coordinate definitions below are much simpler to use.