enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Curl (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Curl_(mathematics)

    The curl of the gradient of any scalar field φ is always the zero vector field = which follows from the antisymmetry in the definition of the curl, and the symmetry of second derivatives. The divergence of the curl of any vector field is equal to zero: ∇ ⋅ ( ∇ × F ) = 0. {\displaystyle \nabla \cdot (\nabla \times \mathbf {F} )=0.}

  3. Vector calculus identities - Wikipedia

    en.wikipedia.org/wiki/Vector_calculus_identities

    C: curl, G: gradient, L: Laplacian, CC: curl of curl. Each arrow is labeled with the result of an identity, specifically, the result of applying the operator at the arrow's tail to the operator at its head. The blue circle in the middle means curl of curl exists, whereas the other two red circles (dashed) mean that DD and GG do not exist.

  4. Operator (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Operator_(mathematics)

    Curl, (with operator symbol ) is a vector operator that measures a vector field's curling (winding around, rotating around) trend about a given point. As an extension of vector calculus operators to physics, engineering and tensor spaces, grad, div and curl operators also are often associated with tensor calculus as well as vector calculus.

  5. Stokes' theorem - Wikipedia

    en.wikipedia.org/wiki/Stokes'_theorem

    The line integral of a vector field over a loop is equal to the surface integral of its curl over the enclosed surface. Stokes' theorem is a special case of the generalized Stokes theorem. [5] [6] In particular, a vector field on can be considered as a 1-form in which case its curl is its exterior derivative, a 2-form.

  6. Conservative vector field - Wikipedia

    en.wikipedia.org/wiki/Conservative_vector_field

    This holds as a consequence of the definition of a line integral, the chain rule, and the second fundamental theorem of calculus. v ⋅ d r = ∇ φ ⋅ d r {\displaystyle \mathbf {v} \cdot d\mathbf {r} =\nabla {\varphi }\cdot d\mathbf {r} } in the line integral is an exact differential for an orthogonal coordinate system (e.g., Cartesian ...

  7. Vector calculus - Wikipedia

    en.wikipedia.org/wiki/Vector_calculus

    Vector calculus or vector analysis is a branch of mathematics concerned with the differentiation and integration of vector fields, primarily in three-dimensional Euclidean space, . [1] The term vector calculus is sometimes used as a synonym for the broader subject of multivariable calculus, which spans vector calculus as well as partial differentiation and multiple integration.

  8. AOL Mail

    mail.aol.com/d?reason=invalid_cred

    Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!

  9. Divergence - Wikipedia

    en.wikipedia.org/wiki/Divergence

    Since this definition is coordinate-free, it shows that the divergence is the same in any coordinate system. However the above definition is not often used practically to calculate divergence; when the vector field is given in a coordinate system the coordinate definitions below are much simpler to use.