Search results
Results from the WOW.Com Content Network
Conway's circle theorem as a special case of the generalisation, called "side divider theorem" (Villiers) or "windscreen wiper theorem" (Polster)) Conway's circle is a special case of a more general circle for a triangle that can be obtained as follows: Given any ABC with an arbitrary point P on line AB.
In fluid dynamics the Milne-Thomson circle theorem or the circle theorem is a statement giving a new stream function for a fluid flow when a cylinder is placed into that flow. [ 1 ] [ 2 ] It was named after the English mathematician L. M. Milne-Thomson .
The proofs of the Kronecker–Weber theorem by Kronecker (1853) and Weber (1886) both had gaps. The first complete proof was given by Hilbert in 1896. In 1879, Alfred Kempe published a purported proof of the four color theorem, whose validity as a proof was accepted for eleven years before it was refuted by Percy Heawood.
Proof. Apply the Theorem to A T while recognizing that the eigenvalues of the transpose are the same as those of the original matrix. Example. For a diagonal matrix, the Gershgorin discs coincide with the spectrum. Conversely, if the Gershgorin discs coincide with the spectrum, the matrix is diagonal.
Circle theorem may refer to: Any of many theorems related to the circle; often taught as a group in GCSE mathematics. These include: Inscribed angle theorem. Thales' theorem, if A, B and C are points on a circle where the line AC is a diameter of the circle, then the angle ∠ABC is a right angle. Alternate segment theorem. Ptolemy's theorem.
Download as PDF; Printable version; In other projects Wikidata item; ... Pages in category "Theorems about circles" The following 21 pages are in this category, out ...
The following proof is attributable [2] to Zacharias. [3] Denote the radius of circle by and its tangency point with the circle by . We will use the notation , for the centers of the circles. Note that from Pythagorean theorem,
Kissing circles. Given three mutually tangent circles (black), there are, in general, two possible answers (red) as to what radius a fourth tangent circle can have. In geometry, Descartes' theorem states that for every four kissing, or mutually tangent, circles, the radii of the circles satisfy a certain quadratic equation. By solving this ...