enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Momentum transfer - Wikipedia

    en.wikipedia.org/wiki/Momentum_transfer

    The momentum transfer plays an important role in the evaluation of neutron, X-ray, and electron diffraction for the investigation of condensed matter. Laue-Bragg diffraction occurs on the atomic crystal lattice, conserves the wave energy and thus is called elastic scattering, where the wave numbers final and incident particles, and , respectively, are equal and just the direction changes by a ...

  3. Transport phenomena - Wikipedia

    en.wikipedia.org/wiki/Transport_phenomena

    The various aspects of such equilibrium are directly connected to a specific transport: heat transfer is the system's attempt to achieve thermal equilibrium with its environment, just as mass and momentum transport move the system towards chemical and mechanical equilibrium.

  4. Chilton and Colburn J-factor analogy - Wikipedia

    en.wikipedia.org/wiki/Chilton_and_Colburn_J...

    The basic mechanisms and mathematics of heat, mass, and momentum transport are essentially the same. Among many analogies (like Reynolds analogy , Prandtl–Taylor analogy) developed to directly relate heat transfer coefficients, mass transfer coefficients and friction factors, Chilton and Colburn J-factor analogy proved to be the most accurate.

  5. Momentum-transfer cross section - Wikipedia

    en.wikipedia.org/wiki/Momentum-transfer_cross...

    In physics, and especially scattering theory, the momentum-transfer cross section (sometimes known as the momentum-transport cross section [1]) is an effective scattering cross section useful for describing the average momentum transferred from a particle when it collides with a target. Essentially, it contains all the information about a ...

  6. Mixing length model - Wikipedia

    en.wikipedia.org/wiki/Mixing_length_model

    In fluid dynamics, the mixing length model is a method attempting to describe momentum transfer by turbulence Reynolds stresses within a Newtonian fluid boundary layer by means of an eddy viscosity. The model was developed by Ludwig Prandtl in the early 20th century. [ 1 ]

  7. Boltzmann equation - Wikipedia

    en.wikipedia.org/wiki/Boltzmann_equation

    The equation arises not by analyzing the individual positions and momenta of each particle in the fluid but rather by considering a probability distribution for the position and momentum of a typical particle—that is, the probability that the particle occupies a given very small region of space (mathematically the volume element) centered at ...

  8. Derivation of the Navier–Stokes equations - Wikipedia

    en.wikipedia.org/wiki/Derivation_of_the_Navier...

    A general momentum equation is obtained when the conservation relation is applied to momentum. When the intensive property φ is considered as the mass flux (also momentum density), that is, the product of mass density and flow velocity ρu, by substitution into the general continuity equation:

  9. Kinetic theory of gases - Wikipedia

    en.wikipedia.org/wiki/Kinetic_theory_of_gases

    The transfer of momentum between molecules is explicitly accounted for in Revised Enskog theory, which relaxes the requirement of a gas being dilute. The viscosity equation further presupposes that there is only one type of gas molecules, and that the gas molecules are perfect elastic and hard core particles of spherical shape.