enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Finite set - Wikipedia

    en.wikipedia.org/wiki/Finite_set

    is a finite set with five elements. The number of elements of a finite set is a natural number (possibly zero) and is called the cardinality (or the cardinal number) of the set. A set that is not a finite set is called an infinite set. For example, the set of all positive integers is infinite:

  3. Axiom of choice - Wikipedia

    en.wikipedia.org/wiki/Axiom_of_choice

    If the set A is infinite, then there exists an injection from the natural numbers N to A (see Dedekind infinite). [30] Eight definitions of a finite set are equivalent. [31] Every infinite game in which is a Borel subset of Baire space is determined. Every infinite cardinal κ satisfies 2×κ = κ. [32] Measure theory

  4. Infinite set - Wikipedia

    en.wikipedia.org/wiki/Infinite_set

    In ZF, a set is infinite if and only if the power set of its power set is a Dedekind-infinite set, having a proper subset equinumerous to itself. [4] If the axiom of choice is also true, then infinite sets are precisely the Dedekind-infinite sets. If an infinite set is a well-orderable set, then it has many well-orderings which are non-isomorphic.

  5. Actual infinity - Wikipedia

    en.wikipedia.org/wiki/Actual_infinity

    Infinite sets are so common, that when one considers finite sets, this is generally explicitly stated; for example finite geometry, finite field, etc. Fermat's Last Theorem is a theorem that was stated in terms of elementary arithmetic , which has been proved only more than 350 years later.

  6. Infinity - Wikipedia

    en.wikipedia.org/wiki/Infinity

    At the end of the 19th century, Georg Cantor enlarged the mathematical study of infinity by studying infinite sets and infinite numbers, showing that they can be of various sizes. [1] [3] For example, if a line is viewed as the set of all of its points, their infinite number (i.e., the cardinality of the line) is larger than the number of ...

  7. Discrete mathematics - Wikipedia

    en.wikipedia.org/wiki/Discrete_mathematics

    Set theory is the branch of mathematics that studies sets, which are collections of objects, such as {blue, white, red} or the (infinite) set of all prime numbers. Partially ordered sets and sets with other relations have applications in several areas. In discrete mathematics, countable sets (including finite sets) are the main focus

  8. Cardinal number - Wikipedia

    en.wikipedia.org/wiki/Cardinal_number

    Two sets have the same cardinality if, and only if, there is a one-to-one correspondence (bijection) between the elements of the two sets. In the case of finite sets, this agrees with the intuitive notion of number of elements. In the case of infinite sets, the behavior is more complex.

  9. Complete lattice - Wikipedia

    en.wikipedia.org/wiki/Complete_lattice

    The supremum of finite sets is given by the least common multiple and the infimum by the greatest common divisor. For infinite sets, the supremum will always be 0 while the infimum can well be greater than 1. For example, the set of all even numbers has 2 as the greatest common divisor.