Search results
Results from the WOW.Com Content Network
All the structural genes of an operon are turned ON or OFF together, due to a single promoter and operator upstream to them, but sometimes more control over the gene expression is needed. To achieve this aspect, some bacterial genes are located near together, but there is a specific promoter for each of them; this is called gene clustering ...
A structural gene is a gene that codes for any RNA or protein product other than a regulatory factor (i.e. regulatory protein).A term derived from the lac operon, structural genes are typically viewed as those containing sequences of DNA corresponding to the amino acids of a protein that will be produced, as long as said protein does not function to regulate gene expression.
The phosphorylation of Rb by CDK4/6 and CDK2 dissociates the Rb-repressor complex and serves as an on/off switch for the cell cycle. Once Rb is phosphorylated, the inhibition is released on the E2F transcriptional activity. This allows for the transcription of S phase genes encoding for proteins that amplify the G1 to S phase switch.
Toggle switch which operates using two mutually inhibitory genes, each promoter is inhibited by the repressor that is transcribed by the opposing promoter. Toggle switch design: Inducer 1 inactivates repressor 1, which means repressor 2 is produced. Repressor 2, in turn, stops transcription of the repressor 1 gene and the reporter gene. [14]
For premium support please call: 800-290-4726 more ways to reach us
Enhancers function as a "turn on" switch in gene expression and will activate the promoter region of a particular gene while silencers act as the "turn off" switch. Though these two regulatory elements work against each other, both sequence types affect the promoter region in very similar ways. [4]
The configuration of the genome is essential for enhancer-promoter proximity. Cell-fate decisions are mediated upon highly dynamic genomic reorganizations at interphase to modularly switch on or off entire gene regulatory networks through short to long range chromatin rearrangements. [48]
The two most commonly used inducible expression systems for research of eukaryote cell biology are named Tet-Off and Tet-On. [3] The Tet-Off system for controlling expression of genes of interest in mammalian cells was developed by Professors Hermann Bujard [] and Manfred Gossen at the University of Heidelberg and first published in 1992.