enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Tensor - Wikipedia

    en.wikipedia.org/wiki/Tensor

    For example, an element of the tensor product space V ⊗ W is a second-order "tensor" in this more general sense, [29] and an order-d tensor may likewise be defined as an element of a tensor product of d different vector spaces. [30] A type (n, m) tensor, in the sense defined previously, is also a tensor of order n + m in this more general sense.

  3. Mathematical descriptions of the electromagnetic field

    en.wikipedia.org/wiki/Mathematical_descriptions...

    These equations are inhomogeneous versions of the wave equation, with the terms on the right side of the equation serving as the source functions for the wave. As with any wave equation, these equations lead to two types of solution: advanced potentials (which are related to the configuration of the sources at future points in time), and ...

  4. Electromagnetic tensor - Wikipedia

    en.wikipedia.org/wiki/Electromagnetic_tensor

    This tensor simplifies and reduces Maxwell's equations as four vector calculus equations into two tensor field equations. In electrostatics and electrodynamics, Gauss's law and Ampère's circuital law are respectively:

  5. Covariant formulation of classical electromagnetism - Wikipedia

    en.wikipedia.org/wiki/Covariant_formulation_of...

    Each of these tensor equations corresponds to four scalar equations, one for each value of β. Using the antisymmetric tensor notation and comma notation for the partial derivative (see Ricci calculus ), the second equation can also be written more compactly as: F [ α β , γ ] = 0. {\displaystyle F_{[\alpha \beta ,\gamma ]}=0.}

  6. Outer product - Wikipedia

    en.wikipedia.org/wiki/Outer_product

    If the two coordinate vectors have dimensions n and m, then their outer product is an n × m matrix. More generally, given two tensors (multidimensional arrays of numbers), their outer product is a tensor. The outer product of tensors is also referred to as their tensor product, and can be used to define the tensor algebra.

  7. Cartesian tensor - Wikipedia

    en.wikipedia.org/wiki/Cartesian_tensor

    A dyadic tensor T is an order-2 tensor formed by the tensor product ⊗ of two Cartesian vectors a and b, written T = a ⊗ b.Analogous to vectors, it can be written as a linear combination of the tensor basis e x ⊗ e x ≡ e xx, e x ⊗ e y ≡ e xy, ..., e z ⊗ e z ≡ e zz (the right-hand side of each identity is only an abbreviation, nothing more):

  8. Tensor algebra - Wikipedia

    en.wikipedia.org/wiki/Tensor_algebra

    In mathematics, the tensor algebra of a vector space V, denoted T(V) or T • (V), is the algebra of tensors on V (of any rank) with multiplication being the tensor product.It is the free algebra on V, in the sense of being left adjoint to the forgetful functor from algebras to vector spaces: it is the "most general" algebra containing V, in the sense of the corresponding universal property ...

  9. Tensor product - Wikipedia

    en.wikipedia.org/wiki/Tensor_product

    The tensor product of two vector spaces is a vector space that is defined up to an isomorphism.There are several equivalent ways to define it. Most consist of defining explicitly a vector space that is called a tensor product, and, generally, the equivalence proof results almost immediately from the basic properties of the vector spaces that are so defined.