enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hyperbolic space - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_space

    Hyperbolic space, developed independently by Nikolai Lobachevsky, János Bolyai and Carl Friedrich Gauss, is a geometric space analogous to Euclidean space, but such that Euclid's parallel postulate is no longer assumed to hold. Instead, the parallel postulate is replaced by the following alternative (in two dimensions):

  3. Hyperbolic metric space - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_metric_space

    Two "degenerate" examples of hyperbolic spaces are spaces with bounded diameter (for example finite or compact spaces) and the real line. Metric trees and more generally real trees are the simplest interesting examples of hyperbolic spaces as they are 0-hyperbolic (i.e. all triangles are tripods).

  4. Hyperbolic manifold - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_manifold

    The simplest example of a hyperbolic manifold is hyperbolic space, as each point in hyperbolic space has a neighborhood isometric to hyperbolic space. A simple non-trivial example, however, is the once-punctured torus. This is an example of an (Isom(), )-manifold.

  5. Hyperbolic geometry - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_geometry

    Because Euclidean, hyperbolic and elliptic geometry are all consistent, the question arises: which is the real geometry of space, and if it is hyperbolic or elliptic, what is its curvature? Lobachevsky had already tried to measure the curvature of the universe by measuring the parallax of Sirius and treating Sirius as the ideal point of an ...

  6. Hyperboloid model - Wikipedia

    en.wikipedia.org/wiki/Hyperboloid_model

    Then n-dimensional hyperbolic space is a Riemannian space and distance or length can be defined as the square root of the scalar square. If the signature (+, −, −) is chosen, scalar square between distinct points on the hyperboloid will be negative, so various definitions of basic terms must be adjusted, which can be inconvenient.

  7. Hyperbolic motion - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_motion

    Hyperbolic motions are often taken from inversive geometry: these are mappings composed of reflections in a line or a circle (or in a hyperplane or a hypersphere for hyperbolic spaces of more than two dimensions). To distinguish the hyperbolic motions, a particular line or circle is taken as the absolute.

  8. Hyperbolic - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic

    Hyperbolic may refer to: of or pertaining to a hyperbola, a type of smooth curve lying in a plane in mathematics Hyperbolic geometry, a non-Euclidean geometry; Hyperbolic functions, analogues of ordinary trigonometric functions, defined using the hyperbola; of or pertaining to hyperbole, the use of exaggeration as a rhetorical device or figure ...

  9. Hyperbolic coordinates - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_coordinates

    For example, in thermodynamics the isothermal process explicitly follows the hyperbolic path and work can be interpreted as a hyperbolic angle change. Similarly, a given mass M of gas with changing volume will have variable density δ = M / V , and the ideal gas law may be written P = k T δ so that an isobaric process traces a hyperbola in the ...