Search results
Results from the WOW.Com Content Network
The CaBER (Capillary Breakup Extensional Rheometer) was the only commercially available instrument based on capillary breakup. Based on the experimental work of Entov, Bazilevsky and co-workers, the CaBER was developed by McKinley and co-workers at MIT in collaboration with the Cambridge Polymer Group in the early 2000s.
Capillary rheometers are especially advantageous for characterization of therapeutic protein solutions since it determines the ability to be syringed. [6] Additionally, there is an inverse relationship between the rheometry and solution stability, as well as thermodynamic interactions. Rotational geometries of different types of shearing rheometers
Rheometry (from Greek ῥέος (rheos) 'stream') generically refers to the experimental techniques used to determine the rheological properties of materials, [1] that is the qualitative and quantitative relationships between stresses and strains and their derivatives.
Measuring principle: The slit viscometer/rheometer is based on the fundamental principle that a viscous liquid resists flow, exhibiting a decreasing pressure along the length of the slit. The pressure decrease or drop ( ∆ P ) is correlated with the shear stress at the wall boundary.
Rheology (/ r iː ˈ ɒ l ə dʒ i /; from Greek ῥέω (rhéō) 'flow' and -λoγία (-logia) 'study of') is the study of the flow of matter, primarily in a fluid (liquid or gas) state but also as "soft solids" or solids under conditions in which they respond with plastic flow rather than deforming elastically in response to an applied force.
Much like the Meissner-type rheometer, the SER rheometer uses a set of two rollers to strain a sample at a given rate. [31] It then calculates the sample viscosity using the well known equation: σ = η ϵ ˙ {\displaystyle \sigma =\eta {\dot {\epsilon }}} where σ {\displaystyle \sigma } is the stress, η {\displaystyle \eta } is the viscosity ...
Experts say vehicle-based attacks are simple for a 'lone wolf' terrorist to plan and execute, and challenging for authorities to prevent.
The bubble pressure method makes use of this bubble pressure which is higher than in the surrounding environment (water). A gas stream is pumped into a capillary that is immersed in a fluid. The resulting bubble at the end of the capillary tip continually becomes bigger in surface; thereby, the bubble radius is decreasing.