Search results
Results from the WOW.Com Content Network
A primitive Pythagorean triple is one in which a, b and c are coprime (that is, they have no common divisor larger than 1). [1] For example, (3, 4, 5) is a primitive Pythagorean triple whereas (6, 8, 10) is not. Every Pythagorean triple can be scaled to a unique primitive Pythagorean triple by dividing (a, b, c) by their greatest common divisor ...
Wade and Wade [17] first introduced the categorization of Pythagorean triples by their height, defined as c − b, linking 3,4,5 to 5,12,13 and 7,24,25 and so on. McCullough and Wade [18] extended this approach, which produces all Pythagorean triples when k > h √ 2 /d: Write a positive integer h as pq 2 with p square-free and q positive.
A Pythagorean triple has three positive integers a, b, and c, such that a 2 + b 2 = c 2. In other words, a Pythagorean triple represents the lengths of the sides of a right triangle where all three sides have integer lengths. [1] Such a triple is commonly written (a, b, c). Some well-known examples are (3, 4, 5) and (5, 12, 13).
which is both the t-th triangular number and the s-th square number. A near-isosceles Pythagorean triple is an integer solution to a 2 + b 2 = c 2 where a + 1 = b. The next table shows that splitting the odd number H n into nearly equal halves gives a square triangular number when n is even and a near isosceles Pythagorean triple when n is odd ...
A tree of primitive Pythagorean triples is a mathematical tree in which each node represents a primitive Pythagorean triple and each primitive Pythagorean triple is represented by exactly one node. In two of these trees, Berggren's tree and Price's tree, the root of the tree is the triple (3,4,5), and each node has exactly three children ...
All centered square numbers and their divisors have a remainder of 1 when divided by 4. Hence all centered square numbers and their divisors end with digit 1 or 5 in base 6, 8, and 12. Every centered square number except 1 is the hypotenuse of a Pythagorean triple (3-4-5, 5-12-13, 7-24-25, ...). This is exactly the sequence of Pythagorean ...
Although its name is recent, the silver ratio (or silver mean) has been studied since ancient times because of its connections to the square root of 2, almost-isosceles Pythagorean triples, square triangular numbers, Pell numbers, the octagon, and six polyhedra with octahedral symmetry. Silver rectangle in a regular octagon.
The Pythagorean triple (4,3,5) is associated to the rational point (4/5,3/5) on the unit circle. In mathematics, the rational points on the unit circle are those points (x, y) such that both x and y are rational numbers ("fractions") and satisfy x 2 + y 2 = 1. The set of such points turns out to be closely related to primitive Pythagorean triples.