Search results
Results from the WOW.Com Content Network
The multiplicity of a prime factor p of n is the largest exponent m for which p m divides n. The tables show the multiplicity for each prime factor. ... 85: 5·17 86: ...
85 is: the product of two prime numbers (5 and 17), and is therefore a semiprime of the form (5.q) where q is prime. specifically, the 24th Semiprime, it being the fourth of the form (5.q). together with 86 and 87, forms the second cluster of three consecutive semiprimes; the first comprising 33, 34, 35. [1]
The same prime factor may occur more than once; this example has two copies of the prime factor When a prime occurs multiple times, exponentiation can be used to group together multiple copies of the same prime number: for example, in the second way of writing the product above, 5 2 {\displaystyle 5^{2}} denotes the square or second power of 5 ...
Here the exponent () is the multiplicity of as a prime factor of (also known as the p-adic valuation of ). For example, in base 10, 378 = 2 1 · 3 3 · 7 1 is a Smith number since 3 + 7 + 8 = 2 · 1 + 3 · 3 + 7 · 1, and 22 = 2 1 · 11 1 is a Smith number, because 2 + 2 = 2 · 1 + (1 + 1) · 1.
A cluster prime is a prime p such that every even natural number k ≤ p − 3 is the difference of two primes not exceeding p. 3, 5, 7, 11, 13, 17, 19, 23, ... (OEIS: A038134) All odd primes between 3 and 89, inclusive, are cluster primes. The first 10 primes that are not cluster primes are: 2, 97, 127, 149, 191, 211, 223, 227, 229, 251.
A Gaussian integer is either the zero, one of the four units (±1, ±i), a Gaussian prime or composite.The article is a table of Gaussian Integers x + iy followed either by an explicit factorization or followed by the label (p) if the integer is a Gaussian prime.
The numbers which remain prime under cyclic shifts of digits. A016114: Home prime: 1, 2, 3, 211, 5, 23, 7, 3331113965338635107, 311, 773, ... For n ≥ 2, a(n) is the prime that is finally reached when you start with n, concatenate its prime factors (A037276) and repeat until a prime is reached; a(n) = −1 if no prime is ever reached. A037274
Henryk Iwaniec showed that there are infinitely many numbers of the form + with at most two prime factors. [ 26 ] [ 27 ] Ankeny [ 28 ] and Kubilius [ 29 ] proved that, assuming the extended Riemann hypothesis for L -functions on Hecke characters , there are infinitely many primes of the form p = x 2 + y 2 {\displaystyle p=x^{2}+y^{2}} with y ...