enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Molecular geometry - Wikipedia

    en.wikipedia.org/wiki/Molecular_geometry

    Molecular geometry is the three-dimensional arrangement of the atoms that constitute a molecule. It includes the general shape of the molecule as well as bond lengths , bond angles , torsional angles and any other geometrical parameters that determine the position of each atom.

  3. Molecular configuration - Wikipedia

    en.wikipedia.org/wiki/Molecular_configuration

    The molecular configuration of a molecule is the permanent geometry that results from the spatial arrangement of its bonds. [1] The ability of the same set of atoms to form two or more molecules with different configurations is stereoisomerism. This is distinct from constitutional isomerism which arises from atoms being connected in a different ...

  4. Seesaw molecular geometry - Wikipedia

    en.wikipedia.org/wiki/Seesaw_molecular_geometry

    The seesaw geometry occurs when a molecule has a steric number of 5, with the central atom being bonded to 4 other atoms and 1 lone pair (AX 4 E 1 in AXE notation). An atom bonded to 5 other atoms (and no lone pairs) forms a trigonal bipyramid with two axial and three equatorial positions, but in the seesaw geometry one of the atoms is replaced ...

  5. Crystal structure - Wikipedia

    en.wikipedia.org/wiki/Crystal_structure

    In crystallography, crystal structure is a description of ordered arrangement of atoms, ions, or molecules in a crystalline material. [1] Ordered structures occur from intrinsic nature of constituent particles to form symmetric patterns that repeat along the principal directions of three-dimensional space in matter.

  6. VSEPR theory - Wikipedia

    en.wikipedia.org/wiki/VSEPR_theory

    VSEPR theory is used to predict the arrangement of electron pairs around central atoms in molecules, especially simple and symmetric molecules. A central atom is defined in this theory as an atom which is bonded to two or more other atoms, while a terminal atom is bonded to only one other atom.

  7. Cis–trans isomerism - Wikipedia

    en.wikipedia.org/wiki/Cis–trans_isomerism

    Cis–trans isomerism, also known as geometric isomerism, describes certain arrangements of atoms within molecules. The prefixes " cis " and " trans " are from Latin: "this side of" and "the other side of", respectively. [ 1 ]

  8. Tetrahedral molecular geometry - Wikipedia

    en.wikipedia.org/wiki/Tetrahedral_molecular_geometry

    In a tetrahedral molecular geometry, a central atom is located at the center with four substituents that are located at the corners of a tetrahedron.The bond angles are arccos(− ⁠ 1 / 3 ⁠) = 109.4712206...° ≈ 109.5° when all four substituents are the same, as in methane (CH 4) [1] [2] as well as its heavier analogues.

  9. Octahedral molecular geometry - Wikipedia

    en.wikipedia.org/wiki/Octahedral_molecular_geometry

    For ML a 4 L b 2, two isomers exist.These isomers of ML a 4 L b 2 are cis, if the L b ligands are mutually adjacent, and trans, if the L b groups are situated 180° to each other. It was the analysis of such complexes that led Alfred Werner to the 1913 Nobel Prize–winning postulation of octahedral complexes.