Search results
Results from the WOW.Com Content Network
The Schwarzschild radius or the gravitational radius is a physical parameter in the Schwarzschild solution to Einstein's field equations that corresponds to the radius defining the event horizon of a Schwarzschild black hole. It is a characteristic radius associated with any quantity of mass.
In 1958, David Finkelstein used general relativity to introduce a stricter definition of a local black hole event horizon as a boundary beyond which events of any kind cannot affect an outside observer, leading to information and firewall paradoxes, encouraging the re-examination of the concept of local event horizons and the notion of black ...
A Schwarzschild black hole is described by the Schwarzschild metric, and cannot be distinguished from any other Schwarzschild black hole except by its mass. The Schwarzschild black hole is characterized by a surrounding spherical boundary, called the event horizon , which is situated at the Schwarzschild radius ( r s {\displaystyle r_{\text{s ...
The black hole event horizon bordering exterior region I would coincide with a Schwarzschild t-coordinate of + while the white hole event horizon bordering this region would coincide with a Schwarzschild t-coordinate of , reflecting the fact that in Schwarzschild coordinates an infalling particle takes an infinite coordinate time to reach the ...
The regions for finite v and r < 2GM is a different region from finite u and r < 2GM. The horizon r = 2GM and finite v (the black hole horizon) is different from that with r = 2GM and finite u (the white hole horizon) . The metric in Kruskal–Szekeres coordinates covers all of the extended Schwarzschild spacetime in a single coordinate system ...
For small mass black holes, the two are very different — there is a singularity at the center of the black hole, and there is no singularity past the cosmological horizon. But the Nariai limit considers making the black hole bigger and bigger, until its event horizon has the same area as the cosmological de Sitter horizon.
The equatorial (maximal) radius of an ergosphere is the Schwarzschild radius, the radius of a non-rotating black hole. The polar (minimal) radius is also the polar (minimal) radius of the event horizon which can be as little as half the Schwarzschild radius for a maximally rotating black hole. [2]
As the raindrop plunges toward the black hole, the speed increases. At the event horizon, the speed has the value 1. There is no discontinuity or singularity at the event horizon. Inside the event horizon, < the speed increases as the raindrop gets closer to the singularity. Eventually, the speed becomes infinite at the singularity.