Search results
Results from the WOW.Com Content Network
It is a way of encoding RGB information, and the actual color displayed depends on the actual RGB colorants used to display the signal. Therefore, a value expressed as Y′UV is only predictable if standard RGB colorants are used (i.e. a fixed set of primary chromaticities, or particular set of red, green, and blue).
For example, applying a histogram equalization directly to the channels in an RGB image would alter the color balance of the image. Instead, the histogram equalization is applied to the Y channel of the YIQ or YUV representation of the image, which only normalizes the brightness levels of the image.
YCbCr is sometimes abbreviated to YCC.Typically the terms Y′CbCr, YCbCr, YPbPr and YUV are used interchangeably, leading to some confusion. The main difference is that YPbPr is used with analog images and YCbCr with digital images, leading to different scaling values for U max and V max (in YCbCr both are ) when converting to/from YUV.
For example, when an ordinary RGB digital image is compressed via the JPEG standard, the RGB color space is first converted (by a rotation matrix) to a YCbCr color space, because the three components in that space have less correlation redundancy and because the chrominance components can then be subsampled by a factor of 2 or 4 to further ...
Judd was the first to employ this type of transformation, and many others were to follow. Converting this RGB space to chromaticities one finds [4] [clarification needed The following formulae do not agree with u=R/(R+G+B) and v=G/(R+G+B)] Judd's UCS, with the Planckian locus and the isotherms from 1,000K to 10,000K, perpendicular to the locus.
The three values of the YCoCg color model are calculated as follows from the three color values of the RGB color model: [2] [] = [] [] The values of Y are in the range from 0 to 1, while Co and Cg are in the range of −0.5 to 0.5, as is typical with "YCC" color models such as YCbCr.
The IC T C P color representation scheme is conceptually related to the LMS color space, as the color transformation from RGB to IC T C P is defined by first converting RGB to LMS with a 3×3 matrix transformation, then applying the nonlinearity function, and then converting the nonlinear signals to IC T C P using another 3×3 matrix ...
RGB (red, green, blue) describes the chromaticity component of a given color, when excluding luminance. RGB itself is not a color space, it is a color model. There are many different color spaces that employ this color model to describe their chromaticities because the R/G/B chromaticities are one facet for reproducing color in CRT & LED displays.