enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Convolution of probability distributions - Wikipedia

    en.wikipedia.org/wiki/Convolution_of_probability...

    The probability distribution of the sum of two or more independent random variables is the convolution of their individual distributions. The term is motivated by the fact that the probability mass function or probability density function of a sum of independent random variables is the convolution of their corresponding probability mass functions or probability density functions respectively.

  3. Convolution - Wikipedia

    en.wikipedia.org/wiki/Convolution

    Some features of convolution are similar to cross-correlation: for real-valued functions, of a continuous or discrete variable, convolution () differs from cross-correlation only in that either () or () is reflected about the y-axis in convolution; thus it is a cross-correlation of () and (), or () and ().

  4. Overlap–add method - Wikipedia

    en.wikipedia.org/wiki/Overlap–add_method

    For example, when = and =, Eq.3 equals , whereas direct evaluation of Eq.1 would require up to complex multiplications per output sample, the worst case being when both and are complex-valued. Also note that for any given M , {\displaystyle M,} Eq.3 has a minimum with respect to N . {\displaystyle N.} Figure 2 is a graph of the values of N ...

  5. Cross-correlation - Wikipedia

    en.wikipedia.org/wiki/Cross-correlation

    Also, the vertical symmetry of f is the reason and are identical in this example. In signal processing, cross-correlation is a measure of similarity of two series as a function of the displacement of one relative to the other. This is also known as a sliding dot product or sliding inner-product. It is commonly used for searching a long signal ...

  6. Generating function - Wikipedia

    en.wikipedia.org/wiki/Generating_function

    A sequence of convolution polynomials defined in the notation above has the following properties: The sequence n! · f n (x) is of binomial type; Special values of the sequence include f n (1) = [z n] F(z) and f n (0) = δ n,0, and; For arbitrary (fixed) ,,, these polynomials satisfy convolution formulas of the form

  7. Overlap–save method - Wikipedia

    en.wikipedia.org/wiki/Overlap–save_method

    For example, when = and =, Eq.3 equals , whereas direct evaluation of Eq.1 would require up to complex multiplications per output sample, the worst case being when both and are complex-valued. Also note that for any given M , {\displaystyle M,} Eq.3 has a minimum with respect to N . {\displaystyle N.} Figure 2 is a graph of the values of N ...

  8. Convolution theorem - Wikipedia

    en.wikipedia.org/wiki/Convolution_theorem

    In mathematics, the convolution theorem states that under suitable conditions the Fourier transform of a convolution of two functions (or signals) is the product of their Fourier transforms. More generally, convolution in one domain (e.g., time domain) equals point-wise multiplication in the other domain (e.g., frequency domain).

  9. Toeplitz matrix - Wikipedia

    en.wikipedia.org/wiki/Toeplitz_matrix

    Similarly, one can represent linear convolution as multiplication by a Toeplitz matrix. Toeplitz matrices commute asymptotically. This means they diagonalize in the same basis when the row and column dimension tends to infinity. For symmetric Toeplitz matrices, there is the decomposition