Search results
Results from the WOW.Com Content Network
Modern algorithms and computers can quickly factor univariate polynomials of degree more than 1000 having coefficients with thousands of digits. [3] For this purpose, even for factoring over the rational numbers and number fields, a fundamental step is a factorization of a polynomial over a finite field.
In mathematics and computer algebra the factorization of a polynomial consists of decomposing it into a product of irreducible factors.This decomposition is theoretically possible and is unique for polynomials with coefficients in any field, but rather strong restrictions on the field of the coefficients are needed to allow the computation of the factorization by means of an algorithm.
The non-real factors come in pairs which when multiplied give quadratic polynomials with real coefficients. Since every polynomial with complex coefficients can be factored into 1st-degree factors (that is one way of stating the fundamental theorem of algebra ), it follows that every polynomial with real coefficients can be factored into ...
In elementary algebra, factoring a polynomial reduces the problem of finding its roots to finding the roots of the factors. Polynomials with coefficients in the integers or in a field possess the unique factorization property, a version of the fundamental theorem of arithmetic with prime numbers replaced by irreducible polynomials.
Applicable to: square, hermitian, positive definite matrix Decomposition: =, where is upper triangular with real positive diagonal entries Comment: if the matrix is Hermitian and positive semi-definite, then it has a decomposition of the form = if the diagonal entries of are allowed to be zero
So, if the three non-monic coefficients of the depressed quartic equation, + + + =, in terms of the five coefficients of the general quartic equation are given as follows: =, = + and = +, then the criteria to identify a priori each case of quartic equations with multiple roots and their respective solutions are shown below.
The following simplified example shows the economy one gets from the Cholesky decomposition: suppose the goal is to generate two correlated normal variables and with given correlation coefficient . To accomplish that, it is necessary to first generate two uncorrelated Gaussian random variables z 1 {\textstyle z_{1}} and z 2 {\textstyle z_{2 ...
p is an integer factor of the constant term a 0, and; q is an integer factor of the leading coefficient a n. The rational root theorem is a special case (for a single linear factor) of Gauss's lemma on the factorization of polynomials. The integral root theorem is the special case of the rational root theorem when the leading coefficient is a n ...