Search results
Results from the WOW.Com Content Network
Toyesh Prakash Sharma, Etisha Sharma, "Putting Forward Another Generalization Of The Class Of Exponential Integrals And Their Applications.," International Journal of Scientific Research in Mathematical and Statistical Sciences, Vol.10, Issue.2, pp.1-8, 2023.
Plot of the exponential integral function E n(z) with n=2 in the complex plane from -2-2i to 2+2i with colors created with Mathematica 13.1 function ComplexPlot3D In mathematics, the exponential integral Ei is a special function on the complex plane .
A. Dieckmann, Table of Integrals (Elliptic Functions, Square Roots, Inverse Tangents and More Exotic Functions): Indefinite Integrals Definite Integrals; Math Major: A Table of Integrals; O'Brien, Francis J. Jr. "500 Integrals of Elementary and Special Functions". Derived integrals of exponential, logarithmic functions and special functions.
A different technique, which goes back to Laplace (1812), [3] is the following. Let = =. Since the limits on s as y → ±∞ depend on the sign of x, it simplifies the calculation to use the fact that e −x 2 is an even function, and, therefore, the integral over all real numbers is just twice the integral from zero to infinity.
The integral (+) = is proportional to the Fourier transform of the Gaussian where J is the conjugate variable of x. By again completing the square we see that the Fourier transform of a Gaussian is also a Gaussian, but in the conjugate variable.
If f(x) is a smooth function integrated over a small number of dimensions, and the domain of integration is bounded, there are many methods for approximating the integral to the desired precision. Numerical integration has roots in the geometrical problem of finding a square with the same area as a given plane figure ( quadrature or squaring ...
In mathematics, a square-integrable function, also called a quadratically integrable function or function or square-summable function, [1] is a real- or complex-valued measurable function for which the integral of the square of the absolute value is finite.
In mathematics, the definite integral ()is the area of the region in the xy-plane bounded by the graph of f, the x-axis, and the lines x = a and x = b, such that area above the x-axis adds to the total, and that below the x-axis subtracts from the total.