Search results
Results from the WOW.Com Content Network
A thermodynamic system is a macroscopic object, the microscopic details of which are not explicitly considered in its thermodynamic description. The number of state variables required to specify the thermodynamic state depends on the system, and is not always known in advance of experiment; it is usually found from experimental evidence.
Given a set of extensive parameters X i (energy, mass, entropy, number of particles and so on) and thermodynamic forces F i (related to their related intrinsic parameters, such as temperature and pressure), the Onsager theorem states that [16]
In the thermodynamics of equilibrium, a state function, function of state, or point function for a thermodynamic system is a mathematical function relating several state variables or state quantities (that describe equilibrium states of a system) that depend only on the current equilibrium thermodynamic state of the system [1] (e.g. gas, liquid, solid, crystal, or emulsion), not the path which ...
The first law of thermodynamics states: In a process without transfer of matter, the change in internal energy,, of a thermodynamic system is equal to the energy gained as heat,, less the thermodynamic work,, done by the system on its surroundings. [32] [nb 1]
The state postulate is a term used in thermodynamics that defines the given number of properties to a thermodynamic system in a state of equilibrium. It is also sometimes referred to as the state principle. [1] The state postulate allows a finite number of properties to be specified in order to fully describe a state of thermodynamic equilibrium.
In thermodynamics, a state variable is an independent variable of a state function. ... the number of state variables are equal to the number of (independent) storage ...
Altitude (or elevation) is usually not a thermodynamic property. Altitude can help specify the location of a system, but that does not describe the state of the system. An exception would be if the effect of gravity need to be considered in order to describe a state, in which case altitude could indeed be a thermodynamic property.
The equilibrium state of a thermodynamic system is described by specifying its "state". The state of a thermodynamic system is specified by a number of extensive quantities, the most familiar of which are volume, internal energy, and the amount of each constituent particle (particle numbers). Extensive parameters are properties of the entire ...