enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Neutron star - Wikipedia

    en.wikipedia.org/wiki/Neutron_star

    A neutron star is so dense that one teaspoon (5 milliliters) of its material would have a mass over 5.5 × 10 12 kg, about 900 times the mass of the Great Pyramid of Giza. [b] The entire mass of the Earth at neutron star density would fit into a sphere 305 m in diameter, about the size of the Arecibo Telescope.

  3. Habitability of neutron star systems - Wikipedia

    en.wikipedia.org/wiki/Habitability_of_neutron...

    A habitable planet orbiting a neutron star must be between one and 10 times the mass of the Earth. If the planet were lighter, its atmosphere would be lost. Its atmosphere must also be thick enough to convert the intense X-ray radiation from the neutron star into heat on its surface allowing it to have a temperature suitable for life. [1]

  4. Stellar nucleosynthesis - Wikipedia

    en.wikipedia.org/wiki/Stellar_nucleosynthesis

    Further advances were made, especially to nucleosynthesis by neutron capture of the elements heavier than iron, by Margaret and Geoffrey Burbidge, William Alfred Fowler and Fred Hoyle in their famous 1957 B 2 FH paper, [3] which became one of the most heavily cited papers in astrophysics history. Stars evolve because of changes in their ...

  5. Nucleosynthesis - Wikipedia

    en.wikipedia.org/wiki/Nucleosynthesis

    Neutron star mergers are a recently discovered major source of elements produced in the r-process. When two neutron stars collide, a significant amount of neutron-rich matter may be ejected which then quickly forms heavy elements. Cosmic ray spallation is a process wherein cosmic rays impact nuclei and fragment them.

  6. Astrophysical X-ray source - Wikipedia

    en.wikipedia.org/wiki/Astrophysical_X-ray_source

    "And since the inner part of the disk obviously can't orbit any closer than the neutron star's surface, these measurements give us a maximum size of the neutron star's diameter. The neutron stars can be no larger than 18 to 20.5 miles across, results that agree with other types of measurements." [40]

  7. s-process - Wikipedia

    en.wikipedia.org/wiki/S-process

    The s-process is believed to occur mostly in asymptotic giant branch stars, seeded by iron nuclei left by a supernova during a previous generation of stars. In contrast to the r-process which is believed to occur over time scales of seconds in explosive environments, the s-process is believed to occur over time scales of thousands of years, passing decades between neutron captures.

  8. Huge energetic flare from magnetic neutron star detected - AOL

    www.aol.com/news/huge-energetic-flare-magnetic...

    The main trait that sets magnetars apart from other neutron stars is a magnetic field 1,000 to 10,000 times stronger than an ordinary neutron star's magnetism and a trillion times that of the sun.

  9. List of neutron stars - Wikipedia

    en.wikipedia.org/wiki/List_of_Neutron_stars

    Neutron stars are the collapsed cores of supergiant stars. [1] They are created as a result of supernovas and gravitational collapse, [2] and are the second-smallest and densest class of stellar objects. [3] In the cores of these stars, protons and electrons combine to form neutrons. [2] Neutron stars can be classified as pulsars if they are ...