Search results
Results from the WOW.Com Content Network
One can similarly define the Cartesian product of n sets, also known as an n-fold Cartesian product, which can be represented by an n-dimensional array, where each element is an n-tuple. An ordered pair is a 2-tuple or couple. More generally still, one can define the Cartesian product of an indexed family of sets.
The result of the join can be defined as the outcome of first taking the cartesian product (or cross join) of all rows in the tables (combining every row in table A with every row in table B) and then returning all rows that satisfy the join predicate.
In graph theory, a graph product is a binary operation on graphs. Specifically, it is an operation that takes two graphs G 1 and G 2 and produces a graph H with the following properties: The vertex set of H is the Cartesian product V ( G 1 ) × V ( G 2 ) , where V ( G 1 ) and V ( G 2 ) are the vertex sets of G 1 and G 2 , respectively.
In set theory, a Cartesian product is a mathematical operation which returns a set (or product set) from multiple sets. That is, for sets A and B, the Cartesian product A × B is the set of all ordered pairs (a, b) —where a ∈ A and b ∈ B. [5] The class of all things (of a given type) that have Cartesian products is called a Cartesian ...
The Cartesian product of K 2 and a path graph is a ladder graph. The Cartesian product of two path graphs is a grid graph. The Cartesian product of n edges is a hypercube: =. Thus, the Cartesian product of two hypercube graphs is another hypercube: Q i Q j = Q i+j.
Fundamental to the spatial join operation is the formulation of a spatial relationship between two geometric primitives as a logical predicate; that is, a criterion that can be evaluated as true or false. [3] For example, "A is less than 5km from B" would be true if the distance between points A and B is 3km, and false if the distance is 10km.
In category theory, the product of two (or more) objects in a category is a notion designed to capture the essence behind constructions in other areas of mathematics such as the Cartesian product of sets, the direct product of groups or rings, and the product of topological spaces.
graph products based on the cartesian product of the vertex sets: cartesian graph product: it is a commutative and associative operation (for unlabelled graphs), [2] lexicographic graph product (or graph composition): it is an associative (for unlabelled graphs) and non-commutative operation, [2]