Search results
Results from the WOW.Com Content Network
Darcy's law is an equation that describes the flow of a fluid through a porous medium and through a Hele-Shaw cell. The law was formulated by Henry Darcy based on results of experiments [ 1 ] on the flow of water through beds of sand , forming the basis of hydrogeology , a branch of earth sciences .
The above form for Darcy's law is sometimes also called Darcy's extended law, formulated for horizontal, one-dimensional, immiscible multiphase flow in homogeneous and isotropic porous media. The interactions between the fluids are neglected, so this model assumes that the solid porous media and the other fluids form a new porous matrix through ...
The darcy is referenced to a mixture of unit systems. A medium with a permeability of 1 darcy permits a flow of 1 cm 3 /s of a fluid with viscosity 1 cP (1 mPa·s) under a pressure gradient of 1 atm/cm acting across an area of 1 cm 2. Typical values of permeability range as high as 100,000 darcys for gravel, to less than 0.01 microdarcy for ...
However, the use of Darcy's law alone does not produce accurate results for heterogeneous media like shale, and tight sandstones, where there is a huge proportion of nanopores. This necessitates the use of a flow model that considers the weighted proportion of various flow regimes like Darcy flow, transition flow, slip flow, and free molecular ...
Permeability is typically determined in the lab by application of Darcy's law under steady state conditions or, more generally, by application of various solutions to the diffusion equation for unsteady flow conditions. [8] Permeability needs to be measured, either directly (using Darcy's law), or through estimation using empirically derived ...
The governing equation of Hele-Shaw flows is identical to that of the inviscid potential flow and to the flow of fluid through a porous medium (Darcy's law). It thus permits visualization of this kind of flow in two dimensions. [3] [4] [5]
Darcy's law was originally established as an empirical equation, but is later shown to be derivable as an approximation of Navier-Stokes equation combined with an empirical composite friction force term. This explains the duality in Darcy's law as a governing equation and a defining equation for absolute permeability.
Darcy's law, in hydrogeology, describes the flow of a fluid (such as water) through a porous medium (such as an aquifer). Davis's law, in anatomy, describes how soft tissue models along imposed demands. Corollary to Wolff's law. De Morgan's laws apply to formal logic regarding the negation of pairs of logical operators.