enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Trapezoid - Wikipedia

    en.wikipedia.org/wiki/Trapezoid

    As a consequence the two legs are also of equal length and it has reflection symmetry. This is possible for acute trapezoids or right trapezoids (as rectangles). A parallelogram is (under the inclusive definition) a trapezoid with two pairs of parallel sides. A parallelogram has central 2-fold rotational symmetry (or point reflection symmetry ...

  3. Kite (geometry) - Wikipedia

    en.wikipedia.org/wiki/Kite_(geometry)

    Any non-self-crossing quadrilateral that has an axis of symmetry must be either a kite, with a diagonal axis of symmetry; or an isosceles trapezoid, with an axis of symmetry through the midpoints of two sides. These include as special cases the rhombus and the rectangle respectively, and the square, which is a special case of both. [1]

  4. Rotational symmetry - Wikipedia

    en.wikipedia.org/wiki/Rotational_symmetry

    Rotational symmetry of order n, also called n-fold rotational symmetry, or discrete rotational symmetry of the n th order, with respect to a particular point (in 2D) or axis (in 3D) means that rotation by an angle of ⁠ ⁠ (180°, 120°, 90°, 72°, 60°, 51 3 ⁄ 7 °, etc.) does not change the object. A "1-fold" symmetry is no symmetry (all ...

  5. Rhombus - Wikipedia

    en.wikipedia.org/wiki/Rhombus

    A rhombus has an inscribed circle, while a rectangle has a circumcircle. A rhombus has an axis of symmetry through each pair of opposite vertex angles, while a rectangle has an axis of symmetry through each pair of opposite sides. The diagonals of a rhombus intersect at equal angles, while the diagonals of a rectangle are equal in length.

  6. Crystallographic restriction theorem - Wikipedia

    en.wikipedia.org/wiki/Crystallographic...

    Isometries of order n include, but are not restricted to, n-fold rotations. The theorem also excludes S 8, S 12, D 4d, and D 6d (see point groups in three dimensions), even though they have 4- and 6-fold rotational symmetry only. Rotational symmetry of any order about an axis is compatible with translational symmetry along that axis.

  7. List of planar symmetry groups - Wikipedia

    en.wikipedia.org/wiki/List_of_planar_symmetry_groups

    This article summarizes the classes of discrete symmetry groups of the Euclidean plane. The symmetry groups are named here by three naming schemes: International notation, orbifold notation, and Coxeter notation. There are three kinds of symmetry groups of the plane: 2 families of rosette groups – 2D point groups; 7 frieze groups – 2D line ...

  8. Parallelogram - Wikipedia

    en.wikipedia.org/wiki/Parallelogram

    A parallelogram has rotational symmetry of order 2 (through 180°) (or order 4 if a square). If it also has exactly two lines of reflectional symmetry then it must be a rhombus or an oblong (a non-square rectangle). If it has four lines of reflectional symmetry, it is a square.

  9. Point groups in four dimensions - Wikipedia

    en.wikipedia.org/wiki/Point_groups_in_four...

    A high-index reflective subgroup is the prismatic octahedral symmetry, [4,3,2] (), order 96, subgroup index 4, (Du Val #44 (O/C 2;O/C 2) *, Conway ± 1 / 24 [O×O].2). The truncated cubic prism has this symmetry with Coxeter diagram and the cubic prism is a lower symmetry construction of the tesseract, as .