Search results
Results from the WOW.Com Content Network
Systems sciences covers formal sciences fields like complex systems, cybernetics, dynamical systems theory, and systems theory, and applications in the field of the natural and social sciences and engineering, such as control theory, operations research, social systems theory, systems biology, systems dynamics, systems ecology, systems ...
A discrete dynamical system, discrete-time dynamical system is a tuple (T, M, Φ), where M is a manifold locally diffeomorphic to a Banach space, and Φ is a function. When T is taken to be the integers, it is a cascade or a map. If T is restricted to the non-negative integers we call the system a semi-cascade. [14]
Dynamical systems theory and chaos theory deal with the long-term qualitative behavior of dynamical systems.Here, the focus is not on finding precise solutions to the equations defining the dynamical system (which is often hopeless), but rather to answer questions like "Will the system settle down to a steady state in the long term, and if so, what are the possible steady states?", or "Does ...
In control systems applications, the objective of engineers is to obtain a good performance of the closed-loop system, which is the one comprising the physical system, the feedback loop and the controller. This performance is typically achieved by designing the control law relying on a model of the system, which needs to be identified starting ...
There are also applications governed by deterministic principles whose description is so complex or unwieldy that it makes sense to consider probabilistic approximations. Every element of a graph dynamical system can be made stochastic in several ways. For example, in a sequential dynamical system the update sequence can be made stochastic.
The ergodic theory of dynamical systems has recently been used to prove combinatorial theorems about number theory which has given rise to the field of arithmetic combinatorics. Also dynamical systems theory is heavily involved in the relatively recent field of combinatorics on words. Also combinatorial aspects of dynamical systems are studied.
Complex dynamics, or holomorphic dynamics, is the study of dynamical systems obtained by iterating a complex analytic mapping. This article focuses on the case of algebraic dynamics, where a polynomial or rational function is iterated. In geometric terms, that amounts to iterating a mapping from some algebraic variety to itself.
By applying a Laplace transform to the LTI system above, the transfer function becomes = () = = =For general orders and this is a non-rational transfer function. Non-rational transfer functions cannot be written as an expansion in a finite number of terms (e.g., a binomial expansion would have an infinite number of terms) and in this sense fractional orders systems can be said to have the ...