enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. 4-Hydroxyphenylpyruvic acid - Wikipedia

    en.wikipedia.org/wiki/4-Hydroxyphenylpyruvic_acid

    4-Hydroxyphenylpyruvic acid (4-HPPA) is an intermediate in the metabolism of the amino acid phenylalanine. The aromatic side chain of phenylalanine is hydroxylated by the enzyme phenylalanine hydroxylase to form tyrosine. The conversion from tyrosine to 4-HPPA is in turn catalyzed by tyrosine aminotransferase. [2]

  3. Phenylalanine - Wikipedia

    en.wikipedia.org/wiki/Phenylalanine

    Phenylalanine is a precursor for tyrosine, the monoamine neurotransmitters dopamine, norepinephrine (noradrenaline), and epinephrine (adrenaline), and the biological pigment melanin. It is encoded by the messenger RNA codons UUU and UUC. Phenylalanine is found naturally in the milk of mammals.

  4. Aromatic amino acid - Wikipedia

    en.wikipedia.org/wiki/Aromatic_amino_acid

    In plants, the shikimate pathway first leads to the formation of chorismate, which is the precursor of phenylalanine, tyrosine, and tryptophan.These aromatic amino acids are the precursors of many secondary metabolites, all essential to a plant's biological functions, such as the hormones salicylate and auxin.

  5. Amino acid - Wikipedia

    en.wikipedia.org/wiki/Amino_acid

    Tyrosine (and its precursor phenylalanine) are precursors of the catecholamine neurotransmitters dopamine, epinephrine and norepinephrine and various trace amines. Phenylalanine is a precursor of phenethylamine and tyrosine in humans. In plants, it is a precursor of various phenylpropanoids, which are important in plant metabolism.

  6. Shikimate pathway - Wikipedia

    en.wikipedia.org/wiki/Shikimate_pathway

    The shikimate pathway (shikimic acid pathway) is a seven-step metabolic pathway used by bacteria, archaea, fungi, algae, some protozoans, and plants for the biosynthesis of folates and aromatic amino acids (tryptophan, phenylalanine, and tyrosine). This pathway is not found in mammals.

  7. Arogenic acid - Wikipedia

    en.wikipedia.org/wiki/Arogenic_acid

    Arogenic acid is an intermediate in the biosynthesis of phenylalanine and tyrosine. At physiological pH it exists as its conjugate base arogenate as the acid form is unstable. Metabolism

  8. Tyrosine - Wikipedia

    en.wikipedia.org/wiki/Tyrosine

    In addition to the common amino acid L-tyrosine, which is the para isomer (para-tyr, p-tyr or 4-hydroxyphenylalanine), there are two additional regioisomers, namely meta-tyrosine (also known as 3-hydroxyphenylalanine, L-m-tyrosine, and m-tyr) and ortho-tyrosine (o-tyr or 2-hydroxyphenylalanine), that occur in nature.

  9. Phenylpropanoids metabolism - Wikipedia

    en.wikipedia.org/wiki/Phenylpropanoids_metabolism

    In plants, all phenylpropanoids are derived from the amino acids phenylalanine and tyrosine. Phenylalanine ammonia-lyase (PAL, a.k.a. phenylalanine/tyrosine ammonia-lyase) is an enzyme that transforms L-phenylalanine and tyrosine into trans-cinnamic acid and p-coumaric acid, respectively.