Search results
Results from the WOW.Com Content Network
The insulin transduction pathway is a biochemical pathway by which insulin increases the uptake of glucose into fat and muscle cells and reduces the synthesis of glucose in the liver and hence is involved in maintaining glucose homeostasis. This pathway is also influenced by fed versus fasting states, stress levels, and a variety of other ...
The insulin signal transduction pathway begins when insulin binds to the insulin receptor proteins. Once the transduction pathway is completed, the GLUT-4 storage vesicles becomes one with the cellular membrane. As a result, the GLUT-4 protein channels become embedded into the membrane, allowing glucose to be transported into the cell.
Once insulin binds to the receptor, phosphorylation takes place and attaches to the beta-subunit, thus initiating the transduction process. A protein binds to the phosphorylated receptor protein, becoming phosphorylated as well.
The insulin receptor (IR) is a transmembrane receptor that is activated by insulin, IGF-I, IGF-II and belongs to the large class of receptor tyrosine kinase. [5] Metabolically, the insulin receptor plays a key role in the regulation of glucose homeostasis; a functional process that under degenerate conditions may result in a range of clinical manifestations including diabetes and cancer.
In cell biology, there are a multitude of signalling pathways. Cell signalling is part of the molecular biology system that controls and coordinates the actions of cells.. Akt/PKB signalling pathway
If the blood glucose level falls to dangerously low levels (as during very heavy exercise or lack of food for extended periods), the alpha cells of the pancreas release glucagon, a peptide hormone which travels through the blood to the liver, where it binds to glucagon receptors on the surface of liver cells and stimulates them to break down glycogen stored inside the cells into glucose (this ...
Glycogenesis is the process of glycogen synthesis or the process of converting glucose into glycogen in which glucose molecules are added to chains of glycogen for storage.
In addition to the triggering pathway, the amplifying pathway can cause increased insulin secretion without a further increase in intracellular calcium levels. The amplifying pathway is modulated by byproducts of glucose metabolism along with various intracellular signaling pathways. [11]