enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Gravitoelectromagnetism - Wikipedia

    en.wikipedia.org/wiki/Gravitoelectromagnetism

    Diagram regarding the confirmation of gravitomagnetism by Gravity Probe B. Gravitoelectromagnetism, abbreviated GEM, refers to a set of formal analogies between the equations for electromagnetism and relativistic gravitation; specifically: between Maxwell's field equations and an approximation, valid under certain conditions, to the Einstein field equations for general relativity.

  3. Fundamental interaction - Wikipedia

    en.wikipedia.org/wiki/Fundamental_interaction

    Electric and magnetic force into electromagnetism; The electromagnetic interaction and the weak interaction into the electroweak interaction; see below. Both magnitude ("relative strength") and "range" of the associated potential, as given in the table, are meaningful only within a rather complex theoretical framework.

  4. Electromagnetism - Wikipedia

    en.wikipedia.org/wiki/Electromagnetism

    The electromagnetic force is one of the four fundamental forces of nature. It is the dominant force in the interactions of atoms and molecules. Electromagnetism can be thought of as a combination of electrostatics and magnetism, which are distinct but closely intertwined phenomena. Electromagnetic forces occur between any two charged particles.

  5. Force - Wikipedia

    en.wikipedia.org/wiki/Force

    The pound-force has a metric counterpart, less commonly used than the newton: the kilogram-force (kgf) (sometimes kilopond), is the force exerted by standard gravity on one kilogram of mass. The kilogram-force leads to an alternate, but rarely used unit of mass: the metric slug (sometimes mug or hyl) is that mass that accelerates at 1 m·s −2 ...

  6. Classical field theory - Wikipedia

    en.wikipedia.org/wiki/Classical_field_theory

    For the cases of time-independent gravity and electromagnetism, the fields are gradients of corresponding potentials =, = so substituting these into Gauss' law for each case obtains =, = = where ρ g is the mass density , ρ e the charge density , G the gravitational constant and k e = 1/4πε 0 the electric force constant.

  7. Coulomb's law - Wikipedia

    en.wikipedia.org/wiki/Coulomb's_law

    Also, gravitational forces are much weaker than electrostatic forces. [2] Coulomb's law can be used to derive Gauss's law , and vice versa. In the case of a single point charge at rest, the two laws are equivalent, expressing the same physical law in different ways. [ 6 ]

  8. Electroweak interaction - Wikipedia

    en.wikipedia.org/wiki/Electroweak_interaction

    In particle physics, the electroweak interaction or electroweak force is the unified description of two of the fundamental interactions of nature: electromagnetism (electromagnetic interaction) and the weak interaction. Although these two forces appear very different at everyday low energies, the theory models them as two different aspects of ...

  9. Gravity - Wikipedia

    en.wikipedia.org/wiki/Gravity

    In physics, gravity (from Latin gravitas 'weight' [1]) is a fundamental interaction primarily observed as mutual attraction between all things that have mass.Gravity is, by far, the weakest of the four fundamental interactions, approximately 10 38 times weaker than the strong interaction, 10 36 times weaker than the electromagnetic force and 10 29 times weaker than the weak interaction.