Search results
Results from the WOW.Com Content Network
Binary search Visualization of the binary search algorithm where 7 is the target value Class Search algorithm Data structure Array Worst-case performance O (log n) Best-case performance O (1) Average performance O (log n) Worst-case space complexity O (1) Optimal Yes In computer science, binary search, also known as half-interval search, logarithmic search, or binary chop, is a search ...
In the theory of optimal binary search trees, the interleave lower bound is a lower bound on the number of operations required by a Binary Search Tree (BST) to execute a given sequence of accesses. Several variants of this lower bound have been proven. [1] [2] [3] This article is based on a variation of the first Wilber's bound. [4]
A schematic picture of the skip list data structure. Each box with an arrow represents a pointer and a row is a linked list giving a sparse subsequence; the numbered boxes (in yellow) at the bottom represent the ordered data sequence.
Abstractly, a dichotomic search can be viewed as following edges of an implicit binary tree structure until it reaches a leaf (a goal or final state). This creates a theoretical tradeoff between the number of possible states and the running time: given k comparisons, the algorithm can only reach O(2 k ) possible states and/or possible goals.
An x-fast trie containing the integers 1 (001 2), 4 (100 2) and 5 (101 2), which can be used to efficiently solve the predecessor problem.. One simple solution to this problem is to use a balanced binary search tree, which achieves (in Big O notation) a running time of () for predecessor queries.
At each stage it computes a probe position then as with the binary search, moves either the upper or lower bound in to define a smaller interval containing the sought value. Unlike the binary search which guarantees a halving of the interval's size with each stage, a misled interpolation may reduce/i-case efficiency of O(n).
The algorithm is initiated with the heads of each input list. Using these elements, a binary tree of losers is built. For merging, the lowest list element 2 is determined by looking at the overall minimum element at the top of the tree. That value is then popped off, and its leaf is refilled with 7, the next value in the input list.
A Fenwick tree or binary indexed tree (BIT) is a data structure that stores an array of values and can efficiently compute prefix sums of the values and update the values. It also supports an efficient rank-search operation for finding the longest prefix whose sum is no more than a specified value.