enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Circular motion - Wikipedia

    en.wikipedia.org/wiki/Circular_motion

    Velocity and acceleration in non-uniform circular motion. In non-uniform circular motion, an object moves in a circular path with varying speed. Since the speed is changing, there is tangential acceleration in addition to normal acceleration. The net acceleration is directed towards the interior of the circle (but does not pass through its center).

  3. Tangential speed - Wikipedia

    en.wikipedia.org/wiki/Tangential_speed

    Tangential speed is the speed of an object undergoing circular motion, i.e., moving along a circular path. [1] A point on the outside edge of a merry-go-round or turntable travels a greater distance in one complete rotation than a point nearer the center.

  4. Circular orbit - Wikipedia

    en.wikipedia.org/wiki/Circular_orbit

    A circular orbit is an orbit with a fixed distance around the barycenter; that is, in the shape of a circle. In this case, not only the distance, but also the speed, angular speed, potential and kinetic energy are constant. There is no periapsis or apoapsis. This orbit has no radial version.

  5. Angular velocity - Wikipedia

    en.wikipedia.org/wiki/Angular_velocity

    The angular velocity of the particle at P with respect to the origin O is determined by the perpendicular component of the velocity vector v.. In the simplest case of circular motion at radius , with position given by the angular displacement () from the x-axis, the orbital angular velocity is the rate of change of angle with respect to time: =.

  6. Mean motion - Wikipedia

    en.wikipedia.org/wiki/Mean_motion

    In orbital mechanics, mean motion (represented by n) is the angular speed required for a body to complete one orbit, assuming constant speed in a circular orbit which completes in the same time as the variable speed, elliptical orbit of the actual body. [1]

  7. Orbital period - Wikipedia

    en.wikipedia.org/wiki/Orbital_period

    For instance, a small body in circular orbit 10.5 cm above the surface of a sphere of tungsten half a metre in radius would travel at slightly more than 1 mm/s, completing an orbit every hour. If the same sphere were made of lead the small body would need to orbit just 6.7 mm above the surface for sustaining the same orbital period.

  8. Centripetal force - Wikipedia

    en.wikipedia.org/wiki/Centripetal_force

    Upper panel: Ball on a banked circular track moving with constant speed v; Lower panel: Forces on the ball. The upper panel in the image at right shows a ball in circular motion on a banked curve. The curve is banked at an angle θ from the horizontal, and the surface of the road is considered to be slippery.

  9. Centrifugal force - Wikipedia

    en.wikipedia.org/wiki/Centrifugal_force

    In accordance with Newton's third law of motion, the body in curved motion exerts an equal and opposite force on the other body. This reactive force is exerted by the body in curved motion on the other body that provides the centripetal force and its direction is from that other body toward the body in curved motion. [40] [41] [42] [43]