Search results
Results from the WOW.Com Content Network
Velocity and acceleration in non-uniform circular motion. In non-uniform circular motion, an object moves in a circular path with varying speed. Since the speed is changing, there is tangential acceleration in addition to normal acceleration. The net acceleration is directed towards the interior of the circle (but does not pass through its center).
When a body is in uniform circular motion, the force on it changes the direction of its motion but not its speed. For a body moving in a circle of radius r {\displaystyle r} at a constant speed v {\displaystyle v} , its acceleration has a magnitude a = v 2 r {\displaystyle a={\frac {v^{2}}{r}}} and is directed toward the center of the circle.
In uniform circular motion, that is moving with constant speed along a circular path, a particle experiences an acceleration resulting from the change of the direction of the velocity vector, while its magnitude remains constant. The derivative of the location of a point on a curve with respect to time, i.e. its velocity, turns out to be always ...
These results agree with those above for nonuniform circular motion. See also the article on non-uniform circular motion. If this acceleration is multiplied by the particle mass, the leading term is the centripetal force and the negative of the second term related to angular acceleration is sometimes called the Euler force. [22]
There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.
Also equations of motion can be formulated which connect acceleration and force. Equations for several forms of acceleration of bodies and their curved world lines follow from these formulas by integration. Well known special cases are hyperbolic motion for constant longitudinal proper acceleration or uniform circular motion.
The acceleration affecting the motion of air "sliding" over the Earth's surface is the horizontal component of the Coriolis term − 2 ω × v {\displaystyle -2\,{\boldsymbol {\omega \times v}}} This component is orthogonal to the velocity over the Earth surface and is given by the expression
Transverse acceleration (perpendicular to velocity) causes a change in direction. If it is constant in magnitude and changing in direction with the velocity, circular motion ensues. Taking two derivatives of the particle's coordinates concerning time gives the centripetal acceleration = =