Search results
Results from the WOW.Com Content Network
Abstractly, naive Bayes is a conditional probability model: it assigns probabilities (, …,) for each of the K possible outcomes or classes given a problem instance to be classified, represented by a vector = (, …,) encoding some n features (independent variables).
Types of generative models are: Gaussian mixture model (and other types of mixture model) Hidden Markov model; Probabilistic context-free grammar; Bayesian network (e.g. Naive bayes, Autoregressive model) Averaged one-dependence estimators; Latent Dirichlet allocation; Boltzmann machine (e.g. Restricted Boltzmann machine, Deep belief network)
In statistical classification, the Bayes classifier is the classifier having the smallest probability of misclassification of all classifiers using the same set of features. [ 1 ] Definition
Types of discriminative models include logistic regression (LR), conditional random fields (CRFs), decision trees among many others. Generative model approaches which uses a joint probability distribution instead, include naive Bayes classifiers, Gaussian mixture models, variational autoencoders, generative adversarial networks and others.
Binary probabilistic classifiers are also called binary regression models in statistics. In econometrics, probabilistic classification in general is called discrete choice. Some classification models, such as naive Bayes, logistic regression and multilayer perceptrons (when trained under an appropriate loss function) are
Bayesian networks are a modeling tool for assigning probabilities to events, and thereby characterizing the uncertainty in a model's predictions. Deep learning and artificial neural networks are approaches used in machine learning to build computational models which learn from training examples. Bayesian neural networks merge
Linear Discriminant Analysis (LDA)—assumes Gaussian conditional density models; Naive Bayes classifier with multinomial or multivariate Bernoulli event models. The second set of methods includes discriminative models, which attempt to maximize the quality of the output on a training set.
where is the kernel function (usually Gaussian), are the variances of the prior on the weight vector (,), and , …, are the input vectors of the training set. [ 4 ] Compared to that of support vector machines (SVM), the Bayesian formulation of the RVM avoids the set of free parameters of the SVM (that usually require cross-validation-based ...