Search results
Results from the WOW.Com Content Network
The glucose cycle can occur in liver cells due to a liver specific enzyme glucose-6-phosphatase, which catalyse the dephosphorylation of glucose 6-phosphate back to glucose. Glucose-6-phosphate is the product of glycogenolysis or gluconeogenesis, where the goal is to increase free glucose in the blood due body being in catabolic state. Other ...
Type 2 diabetes can develop in dogs, although it is not as prevalent as type 1. [9] Because of this, there is no possibility the permanently damaged pancreatic beta cells could re-activate to engender a remission as may be possible with some feline diabetes cases, where the primary type of diabetes is type 2. [10] [11] [12] Gestational diabetes ...
Phosphorylation of glucose to glucose-6-phosphate (G6P) by glucokinase is the first step of both glycogen synthesis and glycolysis in the liver. When ample glucose is available, glycogen synthesis proceeds at the periphery of the hepatocytes until the cells are replete with glycogen.
The glucokinase regulatory protein (GKRP) also known as glucokinase (hexokinase 4) regulator (GCKR) is a protein produced in hepatocytes (liver cells). GKRP binds and moves glucokinase (GK), thereby controlling both activity and intracellular location [1] [2] of this key enzyme of glucose metabolism.
Conversely, when the blood glucose levels are too high, the pancreas is signaled to release insulin. Insulin is delivered to the liver and other tissues throughout the body (e.g., muscle, adipose). When the insulin is introduced to the liver, it connects to the insulin receptors already present, that is tyrosine kinase receptor. [15]
The liver can also create glucose (gluconeogenesis, see below); during times of low carbohydrate supply from the digestive system, the liver creates glucose and supplies it to other organs. [4] Most enzymes of glycolysis also participate in gluconeogenesis, as it is mostly the reverse metabolic pathway of glycolysis; a deficiency of these liver ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Cori cycle. The Cori cycle (also known as the lactic acid cycle), named after its discoverers, Carl Ferdinand Cori and Gerty Cori, [1] is a metabolic pathway in which lactate, produced by anaerobic glycolysis in muscles, is transported to the liver and converted to glucose, which then returns to the muscles and is cyclically metabolized back to lactate.