Search results
Results from the WOW.Com Content Network
The distance between two points 1 degree apart on the same circle of latitude, measured along that circle of latitude, is slightly more than the shortest distance between those points (unless on the equator, where these are equal); the difference is less than 0.6 m (2 ft).
A geographic coordinate system (GCS) is a spherical or geodetic coordinate system for measuring and communicating positions directly on Earth as latitude and longitude. [1] It is the simplest, oldest and most widely used type of the various spatial reference systems that are in use, and forms the basis for most others.
The geocentric latitude θ is the complement of the polar angle or colatitude θ′ in conventional spherical polar coordinates in which the coordinates of a point are P(r,θ′,λ) where r is the distance of P from the centre O, θ′ is the angle between the radius vector and the polar axis and λ is longitude.
Informally, specifying a geographic location usually means giving the location's latitude and longitude. The numerical values for latitude and longitude can occur in a number of different units or formats: [2] sexagesimal degree: degrees, minutes, and seconds : 40° 26′ 46″ N 79° 58′ 56″ W
Geodetic latitude and geocentric latitude have different definitions. Geodetic latitude is defined as the angle between the equatorial plane and the surface normal at a point on the ellipsoid, whereas geocentric latitude is defined as the angle between the equatorial plane and a radial line connecting the centre of the ellipsoid to a point on the surface (see figure).
Like the traditional method of latitude and longitude, it is a horizontal position representation, which means it ignores altitude and treats the earth surface as a perfect ellipsoid. However, it differs from global latitude/longitude in that it divides earth into 60 zones and projects each to the plane as a basis for its coordinates.
The geocentric altitude is a type of altitude defined as the difference between the two aforementioned quantities: h ′ = R − R 0; [3] it is not to be confused for the geodetic altitude. Conversions between ECEF and geodetic coordinates (latitude and longitude) are discussed at geographic coordinate conversion.
The precision of the latitude part does not increase so much, more strictly however, a meridian arc length per 1 second depends on the latitude at the point in question. The discrepancy of 1 second meridian arc length between equator and pole is about 0.3 metres (1 ft 0 in) because the earth is an oblate spheroid.