Search results
Results from the WOW.Com Content Network
A cyclic number is an integer for which cyclic permutations of the digits ... Kalman, Dan; 'Fractions with Cycling Digit Patterns' The College Mathematics Journal ...
A cyclic number [1] [2] is a natural number n such that n and φ(n) are coprime. Here φ is Euler's totient function. An equivalent definition is that a number n is cyclic if and only if any group of order n is cyclic. [3] Any prime number is clearly cyclic. All cyclic numbers are square-free. [4] Let n = p 1 p 2 …
A number n is called a cyclic number if Z/nZ is the only group of order n, which is true exactly when gcd(n, φ(n)) = 1. [13] The sequence of cyclic numbers include all primes, but some are composite such as 15. However, all cyclic numbers are odd except 2. The cyclic numbers are:
In mathematics, and in particular in group theory, a cyclic permutation is a permutation consisting of a single cycle. [1] [2] In some cases, cyclic permutations are referred to as cycles; [3] if a cyclic permutation has k elements, it may be called a k-cycle. Some authors widen this definition to include permutations with fixed points in ...
Cyclic number, a number such that cyclic permutations of the digits are successive multiples of the number; Cyclic order, a ternary relation defining a way to arrange a set of objects in a circle; Cyclic permutation, a permutation with one nontrivial orbit; Cyclic polygon, a polygon which can be given a circumscribed circle
Each group is named by Small Groups library as G o i, where o is the order of the group, and i is the index used to label the group within that order.. Common group names: Z n: the cyclic group of order n (the notation C n is also used; it is isomorphic to the additive group of Z/nZ)
142,857 is the natural number following 142,856 and preceding 142,858. It is a Kaprekar number. [1]142857, the six repeating digits of 1 / 7 (0. 142857), is the best-known cyclic number in base 10.
In mathematics, the cycles of a permutation π of a finite set S correspond bijectively to the orbits of the subgroup generated by π acting on S. These orbits are subsets of S that can be written as { c 1, ..., c n}, such that π (c i) = c i + 1 for i = 1, ..., n − 1, and π (c n) = c 1. The corresponding cycle of π is written as ( c 1 c 2...