Search results
Results from the WOW.Com Content Network
Cyclic numbers are related to the recurring digital representations of unit fractions. A cyclic number of length L is the digital representation of 1/(L + 1). Conversely, if the digital period of 1/p (where p is prime) is p − 1, then the digits represent a cyclic number. For example: 1/7 = 0.142857 142857...
A cyclic number [1] [2] is a natural number n such that n and φ(n) are coprime. Here φ is Euler's totient function. An equivalent definition is that a number n is cyclic if and only if any group of order n is cyclic. [3] Any prime number is clearly cyclic. All cyclic numbers are square-free. [4] Let n = p 1 p 2 …
A number n is called a cyclic number if Z/nZ is the only group of order n, which is true exactly when gcd(n, φ(n)) = 1. [13] The sequence of cyclic numbers include all primes, but some are composite such as 15. However, all cyclic numbers are odd except 2. The cyclic numbers are:
For example 1 / 7 starts '142' and is followed by '857' while 6 / 7 (by rotation) starts '857' followed by its nines' complement '142'. The rotation of the repetend of a cyclic number always happens in such a way that each successive repetend is a bigger number than the previous one.
Cyclic number, a number such that cyclic permutations of the digits are successive multiples of the number; Cyclic order, a ternary relation defining a way to arrange a set of objects in a circle; Cyclic permutation, a permutation with one nontrivial orbit; Cyclic polygon, a polygon which can be given a circumscribed circle; Cyclic shift, also ...
OEIS sequence A033948 (Numbers that have a primitive root (the multiplicative group modulo n is cyclic)) Numbers n such that the multiplicative group modulo n is the direct product of k cyclic groups: k = 2 OEIS sequence A272592 (2 cyclic groups) k = 3 OEIS sequence A272593 (3 cyclic groups) k = 4 OEIS sequence A272594 (4 cyclic groups)
Depending on the prime factorization of n, some restrictions may be placed on the structure of groups of order n, as a consequence, for example, of results such as the Sylow theorems. For example, every group of order pq is cyclic when q < p are primes with p − 1 not divisible by q. For a necessary and sufficient condition, see cyclic number.
If you square the last three digits and subtract the square of the first three digits, you also get back a cyclic permutation of the number. [citation needed] 857 2 = 734449 142 2 = 20164 734449 − 20164 = 714285. It is the repeating part in the decimal expansion of the rational number 1 / 7 = 0. 142857.