enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Remainder - Wikipedia

    en.wikipedia.org/wiki/Remainder

    In this case, s is called the least absolute remainder. [3] As with the quotient and remainder, k and s are uniquely determined, except in the case where d = 2n and s = ± n. For this exception, we have: a = k⋅d + n = (k + 1)d − n. A unique remainder can be obtained in this case by some convention—such as always taking the positive value ...

  3. Euclidean division - Wikipedia

    en.wikipedia.org/wiki/Euclidean_division

    17 is divided into 3 groups of 5, with 2 as leftover. Here, the dividend is 17, the divisor is 3, the quotient is 5, and the remainder is 2 (which is strictly smaller than the divisor 3), or more symbolically, 17 = (3 × 5) + 2.

  4. Division algorithm - Wikipedia

    en.wikipedia.org/wiki/Division_algorithm

    Long division is the standard algorithm used for pen-and-paper division of multi-digit numbers expressed in decimal notation. It shifts gradually from the left to the right end of the dividend, subtracting the largest possible multiple of the divisor (at the digit level) at each stage; the multiples then become the digits of the quotient, and the final difference is then the remainder.

  5. Quadratic sieve - Wikipedia

    en.wikipedia.org/wiki/Quadratic_sieve

    To factorize the integer n, Fermat's method entails a search for a single number a, n 1/2 < a < n−1, such that the remainder of a 2 divided by n is a square. But these a are hard to find. The quadratic sieve consists of computing the remainder of a 2 /n for several a, then finding a subset of these whose product is a square. This will yield a ...

  6. Divisibility rule - Wikipedia

    en.wikipedia.org/wiki/Divisibility_rule

    One must multiply the leftmost digit of the original number by 3, add the next digit, take the remainder when divided by 7, and continue from the beginning: multiply by 3, add the next digit, etc. For example, the number 371: 3×3 + 7 = 16 remainder 2, and 2×3 + 1 = 7. This method can be used to find the remainder of division by 7.

  7. Modular arithmetic - Wikipedia

    en.wikipedia.org/wiki/Modular_arithmetic

    However, the b here need not be the remainder in the division of a by m. Rather, a ≡ b (mod m) asserts that a and b have the same remainder when divided by m. That is, a = p m + r, b = q m + r, where 0 ≤ r < m is the common remainder.

  8. Modular exponentiation - Wikipedia

    en.wikipedia.org/wiki/Modular_exponentiation

    Modular exponentiation is the remainder when an integer b (the base) is raised to the power e (the exponent), and divided by a positive integer m (the modulus); that is, c = b e mod m. From the definition of division, it follows that 0 ≤ c < m. For example, given b = 5, e = 3 and m = 13, dividing 5 3 = 125 by 13 leaves a remainder of c = 8.

  9. Montgomery modular multiplication - Wikipedia

    en.wikipedia.org/wiki/Montgomery_modular...

    For example, to multiply 7 and 15 modulo 17 in Montgomery form, again with R = 100, compute the product of 3 and 4 to get 12 as above. The extended Euclidean algorithm implies that 8⋅100 − 47⋅17 = 1, so R′ = 8. Multiply 12 by 8 to get 96 and reduce modulo 17 to get 11. This is the Montgomery form of 3, as expected.