Search results
Results from the WOW.Com Content Network
So, 6 is a perfect number because the proper divisors of 6 are 1, 2, and 3, and 1 + 2 + 3 = 6. [2] [4] There is a one-to-one correspondence between the Mersenne primes and the even perfect numbers, but it is unknown whether there exist odd perfect numbers. This is due to the Euclid–Euler theorem, partially proved by Euclid and completed by ...
Jean Argles (1925–2023), British code breaker in World War II; Arne Beurling (1905–1986), Swedish mathematician and cryptographer. Lambros D. Callimahos, US, NSA, worked with William F. Friedman, taught NSA cryptanalysts. Ann Z. Caracristi, US, SIS, solved Japanese Army codes in World War II, later became deputy director of National ...
In number theory, a perfect number is a positive integer that is equal to the sum of its positive proper divisors, that is, divisors excluding the number itself. For instance, 6 has proper divisors 1, 2 and 3, and 1 + 2 + 3 = 6, so 6 is a perfect number. The next perfect number is 28, since 1 + 2 + 4 + 7 + 14 = 28.
Codes operated by substituting according to a large codebook which linked a random string of characters or numbers to a word or phrase. For example, "UQJHSE" could be the code for "Proceed to the following coordinates." When using a cipher the original information is known as plaintext, and the encrypted form as ciphertext. The ciphertext ...
In mathematics, a multiply perfect number (also called multiperfect number or pluperfect number) is a generalization of a perfect number. For a given natural number k , a number n is called k -perfect (or k -fold perfect) if the sum of all positive divisors of n (the divisor function , σ ( n )) is equal to kn ; a number is thus perfect if and ...
In the above example, the code group, 1001, 1002, 1003, might occur more than once and that frequency might match the number of times that ABC occurs in plain text messages. (In the past, or in non-technical contexts, code and cipher are often used to refer to any form of encryption ).
For example, while the effective length of keys 10, 12, and 15 characters is only 60, that of keys of 8, 11, and 15 characters is 1320. If this effective key length is longer than the ciphertext, it achieves the same immunity to the Friedman and Kasiski tests as the running key variant.
In cryptography, a Caesar cipher, also known as Caesar's cipher, the shift cipher, Caesar's code, or Caesar shift, is one of the simplest and most widely known encryption techniques. It is a type of substitution cipher in which each letter in the plaintext is replaced by a letter some fixed number of positions down the alphabet .