Search results
Results from the WOW.Com Content Network
Pages in category "Pi algorithms" The following 17 pages are in this category, out of 17 total. This list may not reflect recent changes. A.
The π-calculus belongs to the family of process calculi, mathematical formalisms for describing and analyzing properties of concurrent computation.In fact, the π-calculus, like the λ-calculus, is so minimal that it does not contain primitives such as numbers, booleans, data structures, variables, functions, or even the usual control flow statements (such as if-then-else, while).
In computer science, communicating sequential processes (CSP) is a formal language for describing patterns of interaction in concurrent systems. [1] It is a member of the family of mathematical theories of concurrency known as process algebras, or process calculi, based on message passing via channels.
In computer science, the process calculi (or process algebras) are a diverse family of related approaches for formally modelling concurrent systems.Process calculi provide a tool for the high-level description of interactions, communications, and synchronizations between a collection of independent agents or processes.
The Chudnovsky algorithm is a fast method for calculating the digits of π, based on Ramanujan's π formulae. Published by the Chudnovsky brothers in 1988, [ 1 ] it was used to calculate π to a billion decimal places.
An algorithm is fundamentally a set of rules or defined procedures that is typically designed and used to solve a specific problem or a broad set of problems.. Broadly, algorithms define process(es), sets of rules, or methodologies that are to be followed in calculations, data processing, data mining, pattern recognition, automated reasoning or other problem-solving operations.
A constructive and efficient solution [Note 2] to an NP-complete problem such as 3-SAT would break most existing cryptosystems including: Existing implementations of public-key cryptography, [32] a foundation for many modern security applications such as secure financial transactions over the Internet.
At any time, updates to the table could be: the insertion of a new process at level 0, a change to the last to enter at a given level, or a process moving up one level (if it is not the last to enter OR there are no other processes at its own level or higher). The filter algorithm generalizes Peterson's algorithm to N > 2 processes. [6]