Search results
Results from the WOW.Com Content Network
In mathematical analysis, the Dirac delta function (or δ distribution), also known as the unit impulse, [1] is a generalized function on the real numbers, whose value is zero everywhere except at zero, and whose integral over the entire real line is equal to one.
The delta potential is the potential = (), where δ(x) is the Dirac delta function. It is called a delta potential well if λ is negative, and a delta potential barrier if λ is positive. The delta has been defined to occur at the origin for simplicity; a shift in the delta function's argument does not change any of the following results.
Schematic diagram of the Dirac delta function by a line surmounted by an arrow. The height of the arrow is usually used to specify the value of any multiplicative constant, which will give the area under the function. The other convention is to write the area next to the arrowhead. Date: 1 July 2008, 19:41 (UTC) Source
The graph of the Dirac comb function is an infinite series of Dirac delta functions spaced at intervals of T. In mathematics, a Dirac comb (also known as sha function, impulse train or sampling function) is a periodic function with the formula := = for some given period . [1]
The function () is the Heaviside step function: H(x) = 0 for x < 0 and H(x) = 1 for x > 0. The value of H(0) will depend upon the particular convention chosen for the Heaviside step function. Note that this will only be an issue for n = 0 since the functions contain a multiplicative factor of x − a for n > 0.
The rules for spin- 1 / 2 Dirac particles are as follows: The propagator is the inverse of the Dirac operator, the lines have arrows just as for a complex scalar field, and the diagram acquires an overall factor of −1 for each closed Fermi loop. If there are an odd number of Fermi loops, the diagram changes sign.
The impulse can be modeled as a Dirac delta function for continuous-time systems, or as the discrete unit sample function for discrete-time systems. The Dirac delta represents the limiting case of a pulse made very short in time while maintaining its area or integral (thus giving an infinitely high peak). While this is impossible in any real ...
A diagram showing all possible subsets of a 3-point set {x,y,z}. The Dirac measure δ x assigns a size of 1 to all sets in the upper-left half of the diagram and 0 to all sets in the lower-right half. In mathematics, a Dirac measure assigns a size to a set based solely on whether it contains a fixed element x or not.