Search results
Results from the WOW.Com Content Network
Conjugate variables are pairs of variables mathematically defined in such a way that they become Fourier transform duals, [1] [2] or more generally are related through Pontryagin duality. The duality relations lead naturally to an uncertainty relation—in physics called the Heisenberg uncertainty principle —between them.
For example, consider the conjugate pair. The pressure p {\displaystyle p} acts as a generalized force: Pressure differences force a change in volume d V {\displaystyle \mathrm {d} V} , and their product is the energy lost by the system due to work.
Cinnamaldehyde is a naturally-occurring compound that has a conjugated system penta-1,3-diene is a molecule with a conjugated system Diazomethane conjugated pi-system. In theoretical chemistry, a conjugated system is a system of connected p-orbitals with delocalized electrons in a molecule, which in general lowers the overall energy of the molecule and increases stability.
The conjugate acid in the after side of an equation gains a hydrogen ion, so in the before side of the equation the compound that has one less hydrogen ion of the conjugate acid is the base. The conjugate base in the after side of the equation lost a hydrogen ion, so in the before side of the equation, the compound that has one more hydrogen ...
The subgroups can thus be divided into conjugacy classes, with two subgroups belonging to the same class if and only if they are conjugate. Conjugate subgroups are isomorphic, but isomorphic subgroups need not be conjugate. For example, an abelian group may have two different subgroups which are isomorphic, but they are never conjugate.
Each of those two expressions in the form of Duhamel's integral or in a series of derivatives reduces a conjugate problem to the solution of only the conduction equation for the body at given conjugate conditions. An example of an early conjugate problem solution using Duhamel's integral has been performed. [8]
In mathematics, two functions are said to be topologically conjugate if there exists a homeomorphism that will conjugate the one into the other. Topological conjugacy, and related-but-distinct § Topological equivalence of flows, are important in the study of iterated functions and more generally dynamical systems, since, if the dynamics of one iterative function can be determined, then that ...
Equivalently, is conjugate to in if and only if and satisfy the Cauchy–Riemann equations in . As an immediate consequence of the latter equivalent definition, if is any harmonic function on , the function is conjugate to for then the Cauchy–Riemann equations are just = and the symmetry of the mixed second order derivatives, =.