Search results
Results from the WOW.Com Content Network
The parameters most commonly appearing in triangle inequalities are: the side lengths a, b, and c;; the semiperimeter s = (a + b + c) / 2 (half the perimeter p);; the angle measures A, B, and C of the angles of the vertices opposite the respective sides a, b, and c (with the vertices denoted with the same symbols as their angle measures);
For example, the sine of angle θ is defined as being the length of the opposite side divided by the length of the hypotenuse. The six trigonometric functions are defined for every real number, except, for some of them, for angles that differ from 0 by a multiple of the right angle (90°). Referring to the diagram at the right, the six ...
Ptolemy's theorem states that the sum of the products of the lengths of opposite sides is equal to the product of the lengths of the diagonals. When those side-lengths are expressed in terms of the sin and cos values shown in the figure above, this yields the angle sum trigonometric identity for sine: sin(α + β) = sin α cos β + cos α sin β.
The longest diagonals of a regular hexagon, connecting diametrically opposite vertices, are twice the length of one side. From this it can be seen that a triangle with a vertex at the center of the regular hexagon and sharing one side with the hexagon is equilateral, and that the regular hexagon can be partitioned into six equilateral triangles.
the third side of a triangle if two sides and an angle opposite to one of them is known (this side can also be found by two applications of the law of sines): [a] = . These formulas produce high round-off errors in floating point calculations if the triangle is very acute, i.e., if c is small relative to a and b or γ is small compared to 1.
The converse is the Braikenridge–Maclaurin theorem, named for 18th-century British mathematicians William Braikenridge and Colin Maclaurin , which states that if the three intersection points of the three pairs of lines through opposite sides of a hexagon lie on a line, then the six vertices of the hexagon lie on a conic; the conic may be ...
An automedian triangle is one whose medians are in the same proportions (in the opposite order) as the sides. If x, y, and z are the three sides of a right triangle, sorted in increasing order by size, and if 2x < z, then z, x + y, and y − x are the three sides of an automedian triangle. For instance, the right triangle with side lengths 5 ...
In Euclidean geometry, a harmonic quadrilateral, or harmonic quadrangle, [1] is a quadrilateral that can be inscribed in a circle (cyclic quadrilateral) in which the products of the lengths of opposite sides are equal. It has several important properties.