Search results
Results from the WOW.Com Content Network
Altitude acclimatization is the process of adjusting to decreasing oxygen levels at higher elevations, in order to avoid altitude sickness. [17] Once above approximately 3,000 metres (10,000 ft) – a pressure of 70 kilopascals (0.69 atm) – most climbers and high-altitude trekkers take the "climb-high, sleep-low" approach.
Very high altitude = 3,500–5,500 metres (11,500–18,000 ft) Extreme altitude = above 5,500 metres (18,000 ft) Travel to each of these altitude regions can lead to medical problems, from the mild symptoms of acute mountain sickness to the potentially fatal high-altitude pulmonary edema and high-altitude cerebral edema .
In COVID-19, the arterial and general tissue oxygen levels can drop without any initial warning.The chest x-ray may show diffuse pneumonia.Cases of silent hypoxia with COVID-19 have been reported for patients who did not experience shortness of breath or coughing until their oxygen levels had depressed to such a degree that they were at risk of acute respiratory distress (ARDS) and organ failure.
At 4000 m, raising the oxygen concentration level by 5% via an oxygen concentrator and an existing ventilation system provides an altitude equivalent of 3000 m, which is much more tolerable for the increasing number of low-landers who work in high altitude. [102]
Chronic mountain sickness (CMS) is a disease in which the proportion of blood volume that is occupied by red blood cells increases (polycythaemia) and there is an abnormally low level of oxygen in the blood . CMS typically develops after extended time living at high altitude (over 2,500 metres (8,200 ft)).
[3] [9] [15] Giving oxygen at flow rates high enough to maintain an SpO 2 at or above 90% is a fair substitute for descent. [3] [9] [15] In the hospital setting, oxygen is generally given by nasal cannula or face mask for several hours until the person is able to maintain oxygen saturations above 90% while breathing the surrounding air. [3]
First aid at altitude is oxygen at the highest practicable concentration and earliest and largest practicable reduction in cabin altitude. Ground-level 100% oxygen therapy is suggested for 2 hours following type-1 decompression sickness that occurs at altitude, if it resolves upon descent.
High-altitude mountaineering can induce pulmonary hypoxia due to decreased atmospheric pressure. This hypoxia causes vasoconstriction that ultimately leads to high altitude pulmonary edema (HAPE). For this reason, some climbers carry supplemental oxygen to prevent hypoxia, edema, and HAPE.