Search results
Results from the WOW.Com Content Network
In electrochemistry, the Nernst equation is a chemical thermodynamical relationship that permits the calculation of the reduction potential of a reaction (half-cell or full cell reaction) from the standard electrode potential, absolute temperature, the number of electrons involved in the redox reaction, and activities (often approximated by concentrations) of the chemical species undergoing ...
The above equation is a modern statement of the theorem. Nernst often used a form that avoided the concept of entropy. [1] Graph of energies at low temperatures. Another way of looking at the theorem is to start with the definition of the Gibbs free energy (G), G = H - TS, where H stands for enthalpy.
The actual physiological potential depends on the ratio of the reduced (Red) and oxidized (Ox) forms according to the Nernst equation and the thermal voltage. When an oxidizer ( Ox ) accepts a number z of electrons ( e − ) to be converted in its reduced form ( Red ), the half-reaction is expressed as:
Temperature 298.15 K (25.00 °C; 77.00 °F); Effective concentration ... Variations from these ideal conditions affect measured voltage via the Nernst equation.
With room temperature ionic liquids, ... After determining the concentration, the applied standard potential can be identified using the Nernst equation. [10]
The rate of delivery of heat is equal to where T is the temperature (the standard temperature, in this case) and dS/dt is the rate of entropy production in the cell. At the thermoneutral voltage, this rate will be zero, which indicates that the thermoneutral voltage may be calculated from the enthalpy .
For common usage the Nernst equation is often given in a simplified form by assuming typical human body temperature (37 °C), reducing the constants and switching to Log base 10. (The units used for concentration are unimportant as they will cancel out into a ratio). For Potassium at normal body temperature one may calculate the equilibrium ...
Quantity (common name/s) (Common) symbol/s Defining equation SI unit Dimension Temperature gradient: No standard symbol K⋅m −1: ΘL −1: Thermal conduction rate, thermal current, thermal/heat flux, thermal power transfer