Search results
Results from the WOW.Com Content Network
This is found by noticing that the line must be perpendicular to both plane normals, and so parallel to their cross product (this cross product is zero if and only if the planes are parallel, and are therefore non-intersecting or entirely coincident).
D 1h and C 2v: group of order 4 with a reflection in a plane and a 180° rotation through a line in that plane; D 1d and C 2h: group of order 4 with a reflection in a plane and a 180° rotation through a line perpendicular to that plane. S 2 is the group of order 2 with a single inversion (C i). "Equal" is meant here as the same up to conjugacy ...
Parallel lines such as metal rails on a railway line meet one another at such points. Lines at infinity also exist; the horizon line is an example of such a line. For an observer standing on a plane, all planes parallel to the plane they stand on meet one another at the horizon line.
It is the intersection point of lines that may not meet on the finished part, such as the tangent lines of a curve or the theoretical sharp corner (TSC) that edge-breaking and deburring will remove. See also SC, TSC, and AC. P.F. press fit: A fastening or mating between two parts which is achieved by friction after the parts are pushed together
In analytic geometry, the intersection of a line and a plane in three-dimensional space can be the empty set, a point, or a line. It is the entire line if that line is embedded in the plane, and is the empty set if the line is parallel to the plane but outside it. Otherwise, the line cuts through the plane at a single point.
The three medians meet at the centroid. Perpendicular bisectors are lines running out of the midpoints of each side of a triangle at 90 degree angles. The three perpendicular bisectors meet at the circumcenter. Other sets of lines associated with a triangle are concurrent as well. For example:
This image line is perpendicular to every line of the plane which passes through the origin, in particular the original line (point of the projective plane). All lines that are perpendicular to the original line at the origin lie in the unique plane which is orthogonal to the original line, that is, the image plane under the association. Thus ...
We can calculate the length of the line from its center to the middle of any edge as √ 2 using Pythagoras' theorem. By rotating the cube by 45° on the x -axis, the point (1, 1, 1) will therefore become (1, 0, √ 2 ) as depicted in the diagram.