Search results
Results from the WOW.Com Content Network
Astrocytes are known to facilitate changes in blood flow [7] [8] and have long been thought to play a role in waste removal in the brain. [9] Astrocytes express water channels called aquaporins. [10] Until 2000, no physiological function had been identified that explained their presence in the mammalian CNS.
The astrocytes of the glia limitans are responsible for separating the brain into two primary compartments. The first compartment is the immune-privileged brain and spinal cord parenchyma. This compartment contains multiple immunosuppressive cell surface proteins such as CD200 and CD95L and it allows for the release of anti-inflammatory factors.
Astrocytes (green) in the context of neurons (red) in a mouse cortex cell culture 23-week-old fetal brain culture human astrocyte Astrocytes (red-yellow) among neurons (green) in the living cerebral cortex. Astrocytes are a sub-type of glial cells in the central nervous system. They are also known as astrocytic glial cells.
Glial cells known as astrocytes enlarge and proliferate to form a scar and produce inhibitory molecules that inhibit regrowth of a damaged or severed axon. In the peripheral nervous system (PNS), glial cells known as Schwann cells (or also as neuri-lemmocytes) promote repair. After axonal injury, Schwann cells regress to an earlier ...
Cerebrospinal fluid (CSF) is a clear, colorless body fluid found within the tissue that surrounds the brain and spinal cord of all vertebrates. CSF is produced by specialized ependymal cells in the choroid plexus of the ventricles of the brain, and absorbed in the arachnoid granulations. In humans, there is about 125 mL of CSF at any one time ...
Since bergmann glia appear to persist in the cerebellum, and perform many of the roles characteristic of astrocytes, they have also been called "specialized astrocytes." [9] Bergmann glia have multiple radial processes that extend across the molecular layer of the cerebellar cortex and terminate at the pial surface as a bulbous endfoot. [11]
In the CNS, AQP4 is the most prevalent aquaporin channel, specifically located at the perimicrovessel astrocyte foot processes, glia limitans, and ependyma. [8] In addition, this channel is commonly found facilitating water movement near cerebrospinal fluid and vasculature. [9] Aquaporin-4 was first identified in 1986.
Micrograph showing gliosis in the cerebellum. Reactive astrocytes on the left display severe proliferation and domain overlap. Reactive astrogliosis is the most common form of gliosis and involves the proliferation of astrocytes, a type of glial cell responsible for maintaining extracellular ion and neurotransmitter concentrations, modulating synapse function, and forming the blood–brain ...