Search results
Results from the WOW.Com Content Network
2.4 – 2.3 billion years ago Earliest evidence (from rocks) that oxygen was in the atmosphere 1.2 billion years ago Red and brown algae become structurally more complex than bacteria 0.75 billion years ago Green algae outperform red and brown algae in the strong light of shallow water 0.475 billion years ago First land plants – mosses and ...
Fossils of what are thought to be filamentous photosynthetic organisms have been dated at 3.4 billion years old. [59] [60] More recent studies also suggest that photosynthesis may have begun about 3.4 billion years ago, [61] [62] though the first direct evidence of photosynthesis comes from thylakoid membranes preserved in 1.75-billion-year-old ...
Carbon on Earth naturally occurs in two stable isotopes, with 98.9% in the form of 12 C and 1.1% in 13 C. [1] [8] The ratio between these isotopes varies in biological organisms due to metabolic processes that selectively use one carbon isotope over the other, or "fractionate" carbon through kinetic or thermodynamic effects. [1]
The light-harvesting system of PSI uses multiple copies of the same transmembrane proteins used by PSII. The energy of absorbed light (in the form of delocalized, high-energy electrons) is funneled into the reaction center, where it excites special chlorophyll molecules (P700, with maximum light absorption at 700 nm) to a higher energy level.
The value of the photosynthetic efficiency is dependent on how light energy is defined – it depends on whether we count only the light that is absorbed, and on what kind of light is used (see Photosynthetically active radiation). It takes eight (or perhaps ten or more [1]) photons to use one molecule of CO 2.
The evolution of oxygen during the light-dependent steps in photosynthesis (Hill reaction) was proposed and proven by British biochemist Robin Hill. He demonstrated that isolated chloroplasts would make oxygen (O 2) but not fix carbon dioxide (CO 2). This is evidence that the light and dark reactions occur at different sites within the cell. [1 ...
Each photosystem has two main subunits: an antenna complex (a light harvesting complex or LHC) and a reaction center. The antenna complex is where light is captured, while the reaction center is where this light energy is transformed into chemical energy. At the reaction center, there are many polypeptides that are surrounded by pigment proteins.
Photosystem II (of cyanobacteria and green plants) is composed of around 20 subunits (depending on the organism) as well as other accessory, light-harvesting proteins. Each photosystem II contains at least 99 cofactors: 35 chlorophyll a, 12 beta-carotene, two pheophytin, two plastoquinone, two heme, one bicarbonate, 20 lipids, the Mn 4 CaO