enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Logistic regression - Wikipedia

    en.wikipedia.org/wiki/Logistic_regression

    This model has a separate latent variable and a separate set of regression coefficients for each possible outcome of the dependent variable. The reason for this separation is that it makes it easy to extend logistic regression to multi-outcome categorical variables, as in the multinomial logit model. In such a model, it is natural to model each ...

  3. Dependent and independent variables - Wikipedia

    en.wikipedia.org/wiki/Dependent_and_independent...

    It is possible to have multiple independent variables or multiple dependent variables. For instance, in multivariable calculus, one often encounters functions of the form z = f(x,y), where z is a dependent variable and x and y are independent variables. [8] Functions with multiple outputs are often referred to as vector-valued functions.

  4. Regression analysis - Wikipedia

    en.wikipedia.org/wiki/Regression_analysis

    The response variable may be non-continuous ("limited" to lie on some subset of the real line). For binary (zero or one) variables, if analysis proceeds with least-squares linear regression, the model is called the linear probability model. Nonlinear models for binary dependent variables include the probit and logit model.

  5. Causal graph - Wikipedia

    en.wikipedia.org/wiki/Causal_graph

    Figure 1 is a causal graph that represents this model specification. Each variable in the model has a corresponding node or vertex in the graph. Additionally, for each equation, arrows are drawn from the independent variables to the dependent variables. These arrows reflect the direction of causation.

  6. Graphical model - Wikipedia

    en.wikipedia.org/wiki/Graphical_model

    Example of a directed acyclic graph on four vertices. If the network structure of the model is a directed acyclic graph, the model represents a factorization of the joint probability of all random variables. More precisely, if the events are , …, then the joint probability satisfies

  7. Linear regression - Wikipedia

    en.wikipedia.org/wiki/Linear_regression

    For example, in a regression model in which cigarette smoking is the independent variable of primary interest and the dependent variable is lifespan measured in years, researchers might include education and income as additional independent variables, to ensure that any observed effect of smoking on lifespan is not due to those other socio ...

  8. Simple linear regression - Wikipedia

    en.wikipedia.org/wiki/Simple_linear_regression

    Graph of points and linear least squares lines in the simple linear regression numerical example. The 0.975 quantile of Student's t-distribution with 13 degrees of freedom is t * 13 = 2.1604, and thus the 95% confidence intervals for α and β are

  9. Interaction (statistics) - Wikipedia

    en.wikipedia.org/wiki/Interaction_(statistics)

    Robust, quantile, and mixed-effects models are among the possibilities, as is generalized linear modeling encompassing a wide range of categorical, ordered, counted or otherwise limited dependent variables. The graph depicts an education*politics interaction, from a probability-weighted logit regression analysis of survey data. [15]